मराठी

If D K = ∣ ∣ ∣ ∣ ∣ 1 N N 2 K N 2 + N + 2 N 2 + N 2 K − 1 N 2 N 2 + N + 2 ∣ ∣ ∣ ∣ ∣ a N D N ∑ K = 1 D K = 48 , Then N Equals (A) 4 (B) 6 (C) 8 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 

पर्याय

  • 4

  • 6

  • 8

  •  none of these

MCQ

उत्तर

(a) 4
\[D_k = \begin{vmatrix} 1 & n & n\\ 2k & n^2 + n + 2 & n^2 + n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ = \begin{vmatrix} 1 & n & n\\ 1 & n + 2 & - 2\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ \sum\nolimits_{k = 1}^n D_k = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 1 & n^2 & n^2 + n + 2 \end{vmatrix} + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 3 & n^2 & n^2 + n + 2 \end{vmatrix} + . . . + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ n & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ \sum\nolimits_{k = 1}^n D_k = 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 1\left( n\left( - 2 - n \right) - 2n \right) + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 2\left( n\left( - 2 - n \right) - 2n \right) + . . . + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + n\left( n\left( - 2 - n \right) - 2n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( 1 + 3 + 5 + 7 + . . . + n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( n^2 \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = 2 n^2 + 4n\]
\[ \Rightarrow 2 n^2 + 4n = 48\]
\[ \Rightarrow \left( n - 6 \right)\left( n - 4 \right) = 0\]
\[ \Rightarrow n = 4\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.7 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.7 | Q 8 | पृष्ठ ९३

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×