Advertisements
Advertisements
प्रश्न
पर्याय
4
6
8
none of these
उत्तर
(a) 4
\[D_k = \begin{vmatrix} 1 & n & n\\ 2k & n^2 + n + 2 & n^2 + n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ = \begin{vmatrix} 1 & n & n\\ 1 & n + 2 & - 2\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\2k - 1 & n^2 & n^2 + n + 2 \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ \sum\nolimits_{k = 1}^n D_k = \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 1 & n^2 & n^2 + n + 2 \end{vmatrix} + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ 3 & n^2 & n^2 + n + 2 \end{vmatrix} + . . . + \begin{vmatrix} 1 & n & n\\ 0 & 2 & - 2 - n\\ n & n^2 & n^2 + n + 2 \end{vmatrix}\]
\[ \sum\nolimits_{k = 1}^n D_k = 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 1\left( n\left( - 2 - n \right) - 2n \right) + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + 2\left( n\left( - 2 - n \right) - 2n \right) + . . . + 1\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + n\left( n\left( - 2 - n \right) - 2n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( 1 + 3 + 5 + 7 + . . . + n \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = n\left( 2\left( n^2 + n + 2 \right) + \left( 2 + n \right) n^2 \right) + \left( n\left( - 2 - n \right) - 2n \right)\left( n^2 \right)\]
\[ \sum\nolimits_{k = 1}^n D_k = 2 n^2 + 4n\]
\[ \Rightarrow 2 n^2 + 4n = 48\]
\[ \Rightarrow \left( n - 6 \right)\left( n - 4 \right) = 0\]
\[ \Rightarrow n = 4\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Prove that :
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The value of the determinant
If \[x, y \in \mathbb{R}\], then the determinant
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.