Advertisements
Advertisements
प्रश्न
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
उत्तर
Here,
\[2x + 3y = 5 . . . (1) \]
\[6x + 9y = 15 . . . (2) \]
\[or , AX = B \]
where,
\[A = \begin{bmatrix}2 & 3 \\ 6 & 9\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{5}{15}\]
\[ \Rightarrow \begin{bmatrix}2 & 3 \\ 6 & 9\end{bmatrix}\binom{x}{y} = \binom{5}{15}\]
\[ \therefore \left| A \right| = \begin{vmatrix}2 & 3 \\ 6 & 9\end{vmatrix}\]
\[ = 18 - 18\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right) = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = 9, C_{12} = - 6, C_{21} = - 3\text{ and }C_{22} = 2\]
\[ \therefore adj A = \begin{bmatrix}9 & - 6 \\ - 3 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 \\ - 6 & 9\end{bmatrix}\]
\[ \Rightarrow \left( adjA \right)B = \begin{bmatrix}9 & - 3 \\ - 6 & 2\end{bmatrix}\binom{5}{15}\]
\[ = \binom{45 - 45}{ - 30 + 30}\]
\[ = \binom{0}{0}\]
\[\text{ If}\left| A \right|=0\text{ and }\left( adjA \right)B=0,\text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, AX=B has infinitely many solutions.}\]
\[\text{ Substituting y=k in eq. (1), we get }\]
\[2x + 3k = 5\]
\[ \Rightarrow 2x = 5 - 3k\]
\[ \Rightarrow x = \frac{5 - 3k}{2}\text{ and }y = k\]
These values of x and y satisfy the third equation .
\[\text{ Thus, }x = \frac{5 - 3k}{2}\text{ and }y = k \left( \text{ where k is a real number }\right) \text{ satisfy the given system of equations }.\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
The value of the determinant
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.