Advertisements
Advertisements
प्रश्न
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
उत्तर
Here,
\[5x + 3y + 7z = 4 . . . (1) \]
\[3x + 26y + 2z = 9 . . . (2)\]
\[7x + 2y + 10z = 5 . . . (3)\]
\[or , AX = B \]
where,
\[ A = \begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} \text{ and } B = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\begin{bmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}5 & 3 & 7 \\ 3 & 26 & 2 \\ 7 & 2 & 10\end{vmatrix}\]
\[ = 5\left( 260 - 4 \right) - 3\left( 30 - 14 \right) + 7(6 - 182)\]
\[ = 1280 - 48 - 1232\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}26 & 2 \\ 2 & 10\end{vmatrix} = 256 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & 2 \\ 7 & 10\end{vmatrix} = - 16, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 26 \\ 7 & 2\end{vmatrix} = - 176\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 7 \\ 2 & 10\end{vmatrix} = - 16 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}5 & 7 \\ 7 & 10\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}5 & 3 \\ 7 & 2\end{vmatrix} = 11\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 7 \\ 26 & 2\end{vmatrix} = - 176, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}5 & 7 \\ 3 & 2\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix} = 121\]
\[adj A = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}^T \]
\[ = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}256 & - 16 & - 176 \\ - 16 & 1 & 11 \\ - 176 & 11 & 121\end{bmatrix}\begin{bmatrix}4 \\ 9 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}1024 - 144 - 880 \\ - 64 + 9 + 55 \\ - 704 + 99 + 605\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ if }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, }AX=B \text{ has infinitely many solutions.}\]
Substituting z=k in eq. (1) and eq. (2), we get
\[5x + 3y = 4 - 7k\text{ and }3x + 26y = 9 - 2k\]
\[\begin{bmatrix}5 & 3 \\ 3 & 26\end{bmatrix}\binom{x}{y} = \binom{4 - 7k}{9 - 2k}\]
Now,
\[\left| A \right| = \begin{vmatrix}5 & 3 \\ 3 & 26\end{vmatrix}\]
\[ = 130 - 9\]
\[ = 121 \neq 0\]
\[adj A = \begin{vmatrix}26 & - 3 \\ - 3 & 5\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\begin{bmatrix}26 & - 3 \\ - 3 & 5\end{bmatrix}\binom{4 - 7k}{9 - 2k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{121}\binom{104 - 182k - 27 + 6k}{ - 12 + 21k + 45 - 10k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{77 - 176k}{121}}{\frac{33 + 11k}{121}}\]
\[ \Rightarrow x = \frac{11\left( 7 - 16k \right)}{121}, y = \frac{11\left( 3 + k \right)}{121} and z = k\]
\[ \therefore x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}and z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = \frac{7 - 16k}{11}, y = \frac{3 + k}{11}\text{ and }z = k \left( \text{where k is a real number } \right)\text{ satisfy the given system of equations .}\]
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
Prove that :
Prove that :
2x + 3y = 10
x + 6y = 4
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
For what value of x, the following matrix is singular?
Write the value of the determinant
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.