मराठी

The Number of Solutions of the System of Equations 2x + Y − Z = 7 X − 3y + 2z = 1 X + 4y − 3z = 5 is (A) 3 (B) 2 (C) 1 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is

पर्याय

  • 3

  • 2

  • 1

  • 0

MCQ

उत्तर

\[(d) 0\]
The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[AX = B \]
Here,
\[A = \begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
Now,
\[\left| A \right|=2 \left( 9 - 8 \right) - 1\left( - 3 - 2 \right) - 1\left( 4 + 3 \right)\]
\[ = 2 + 5 - 7\]
\[ = 0\]
\[ {\text{  Let }C}_{ij} {\text{  be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 2 \\ 4 & - 3\end{vmatrix} = 1, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ 1 & - 3\end{vmatrix} = 5, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & - 3 \\ 1 & 4\end{vmatrix} = 7\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & - 1 \\ 4 & - 3\end{vmatrix} = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & - 1 \\ 1 & - 3\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 1 \\ 1 & 4\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & - 1 \\ - 3 & 2\end{vmatrix} = - 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & - 1 \\ 1 & 2\end{vmatrix} = - 5, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 1 \\ 1 & - 3\end{vmatrix} = - 7\]
\[adj A = \begin{bmatrix}1 & 5 & 7 \\ - 1 & - 5 & - 7 \\ - 1 & - 5 & - 7\end{bmatrix}^T \]
\[ = \begin{bmatrix}1 & - 1 & - 1 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\]
\[ \Rightarrow \left( adj A \right) B = \begin{bmatrix}1 & - 1 & - 1 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}7 - 1 - 5 \\ 35 - 5 - 25 \\ 49 - 7 - 35\end{bmatrix}\]
\[ = \begin{bmatrix}1 \\ 5 \\ 7\end{bmatrix} \neq 0\]
So, the given system of equations has no solution.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [पृष्ठ २१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 2 | पृष्ठ २१

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

3x + y = 19
3x − y = 23


2x + 3y = 10
x + 6y = 4


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


System of equations x + y = 2, 2x + 2y = 3 has ______


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×