Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a & a^2 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix}\]
\[\Delta = \begin{vmatrix} 1 + a^2 + a & 1 + a^2 + a & 1 + a^2 + a\\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applyng }R_1 \to R_1 + R_2 + R_2 \right]\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 1 & 1 \\ a^2 & 1 & a\\a & a^2 & 1 \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1\text{ and }C_3 \to C_3 - C_1 \right]\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & 1 - a^2 & a - a^2 \\a & a^2 - a & 1 - a \end{vmatrix}\]
\[ = \left( 1 + a^2 + a \right) \begin{vmatrix} 1 & 0 & 0 \\ a^2 & \left( 1 - a \right)\left( 1 + a \right) & a\left( 1 - a \right)\\a & a\left( a - 1 \right) & 1 - a \end{vmatrix}\]
\[ = \left( 1 + a^2 + a \right)\left( a - 1 \right)\left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\ a^2 & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \left[\text{ Taking out (a - 1) common from }C_2\text{ and }C_3 \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right) \begin{vmatrix} 1 & 0 & 0\\a & - \left( 1 + a \right) & - a\\a & a & - 1 \end{vmatrix} \right\} \left[ \because \left( 1 + a^2 + a \right)\left( a - 1 \right) = \left( a^3 - 1 \right) \right]\]
\[ = \left( a^3 - 1 \right)\left\{ \left( a - 1 \right)\left( 1 + a^{} + a^2 \right) \right\}\]
\[ = \left( a^3 - 1 \right)\left( a^3 - 1 \right)\]
\[ = \left( a^3 - 1 \right)^2 \]
\[ = RHS \]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
9x + 5y = 10
3y − 2x = 8
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.