Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
उत्तर
Here,
\[ A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\]
\[\left| A \right| = 1\left( - 1 - 2 \right) + 2\left( 2 \right)\]
\[ = - 3 + 4\]
\[ = 1\]
\[\text{ Let }C_{ij}\text{ be the cofactors of the elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 1 & - 2 \\ - 1 & 1\end{vmatrix} = - 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}- 2 & - 2 \\ 0 & 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}- 2 & - 1 \\ 0 & - 1\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}2 & 0 \\ - 1 & 1\end{vmatrix} = - 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 0 \\ 0 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 2 \\ 0 & - 1\end{vmatrix} = 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}2 & 0 \\ - 1 & - 2\end{vmatrix} = - 4, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 0 \\ - 2 & - 2\end{vmatrix} = 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 2 \\ - 2 & - 1\end{vmatrix} = 3\]
\[ \therefore adj A = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[\text{ We know that, }\left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T . \]
\[\text{ Here, }C = A^T \]
\[i . e . , C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ \therefore C^{- 1} = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\]
\[\text{ or, }CX = B\]
\[\text{ where, }C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
Now,
\[ \therefore X = C^{- 1} B\]
\[ \Rightarrow X = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}- 30 + 16 + 14 \\ - 20 + 8 + 7 \\ - 40 + 16 + 21\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ - 5 \\ - 3\end{bmatrix}\]
\[ \therefore x = 0, y = - 5\text{ and }z = - 3 .\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of the determinant
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.