हिंदी

If a = ⎡ ⎢ ⎣ 1 2 0 − 2 − 1 − 2 0 − 1 1 ⎤ ⎥ ⎦ , Find A−1. Using A−1, Solve the System of Linear Equations X − 2y = 10, 2x − Y − Z = 8, −2y + Z = 7 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7

उत्तर

 Here, 
\[ A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\]
\[\left| A \right| = 1\left( - 1 - 2 \right) + 2\left( 2 \right)\]
\[ = - 3 + 4\]
\[ = 1\]
\[\text{ Let }C_{ij}\text{ be the cofactors of the elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 1 & - 2 \\ - 1 & 1\end{vmatrix} = - 3, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}- 2 & - 2 \\ 0 & 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}- 2 & - 1 \\ 0 & - 1\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}2 & 0 \\ - 1 & 1\end{vmatrix} = - 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 0 \\ 0 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 2 \\ 0 & - 1\end{vmatrix} = 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}2 & 0 \\ - 1 & - 2\end{vmatrix} = - 4, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 0 \\ - 2 & - 2\end{vmatrix} = 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 2 \\ - 2 & - 1\end{vmatrix} = 3\]
\[ \therefore adj A = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[ = \begin{bmatrix}- 3 & - 2 & - 4 \\ 2 & 1 & 2 \\ 2 & 1 & 3\end{bmatrix}\]
\[\text{ We know that, }\left( A^T \right)^{- 1} = \left( A^{- 1} \right)^T . \]
\[\text{ Here, }C = A^T \]
\[i . e . , C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}\]
\[ \therefore C^{- 1} = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\]
\[\text{ or, }CX = B\]
\[\text{ where, }C = \begin{bmatrix}1 & - 2 & 0 \\ 2 & - 1 & - 1 \\ 0 & - 2 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
Now,
\[ \therefore X = C^{- 1} B\]
\[ \Rightarrow X = \begin{bmatrix}- 3 & 2 & 2 \\ - 2 & 1 & 1 \\ - 4 & 2 & 3\end{bmatrix}\begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
\[ \Rightarrow X = \begin{bmatrix}- 30 + 16 + 14 \\ - 20 + 8 + 7 \\ - 40 + 16 + 21\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ - 5 \\ - 3\end{bmatrix}\]
\[ \therefore x = 0, y = - 5\text{ and }z = - 3 .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 8.4 | पृष्ठ १६

संबंधित प्रश्न

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


xy = 5
y + z = 3
x + z = 4


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×