Advertisements
Advertisements
प्रश्न
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
विकल्प
3
2
1
0
उत्तर
(d) 0
The given system of equations can be written in matrix form as follows:
\[ \begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[AX = B\]
Here,
\[ A = \begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
Now,
\[\left| A \right|=2 \left( 9 - 8 \right) - 1\left( - 3 - 2 \right) - 1\left( 4 + 3 \right)\]
\[ = 2 + 5 - 7\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 2 \\ 4 & - 3\end{vmatrix} = 1, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ 1 & - 3\end{vmatrix} = 5, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & - 3 \\ 1 & 4\end{vmatrix} = 7\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & - 1 \\ 4 & - 3\end{vmatrix} = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & - 1 \\ 1 & - 3\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 1 \\ 1 & 4\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & - 1 \\ - 3 & 2\end{vmatrix} = 5, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & - 1 \\ 1 & 2\end{vmatrix} = - 5, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 1 \\ 1 & - 3\end{vmatrix} = - 7\]
\[adj A = \begin{bmatrix}1 & 5 & 7 \\ - 1 & - 5 & - 7 \\ 5 & - 5 & - 7\end{bmatrix}^T = \begin{bmatrix}1 & - 1 & 5 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\]
\[ \Rightarrow \left( adj A \right)B = \begin{bmatrix}1 & - 1 & 5 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}7 - 1 + 25 \\ 35 - 5 - 25 \\ 49 - 7 - 35\end{bmatrix} = \begin{bmatrix}32 \\ 5 \\ 6\end{bmatrix}\neq 0\]
The given system of equations is inconsistent . Thus, it has no solution .
APPEARS IN
संबंधित प्रश्न
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
Prove that :
3x + y = 19
3x − y = 23
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x + 2y = 5
3x + 6y = 15
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
System of equations x + y = 2, 2x + 2y = 3 has ______
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.