मराठी

The Number of Solutions of the System of Equations: 2x + Y − Z = 7 X − 3y + 2z = 1 X + 4y − 3z = 5 (A) 3 (B) 2 (C) 1 (D) 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5

पर्याय

  • 3

  • 2

  • 1

  • 0

MCQ

उत्तर

(d) 0
The given system of equations can be written in matrix form as follows:
\[ \begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[AX = B\]
Here, 
\[ A = \begin{bmatrix}2 & 1 & - 1 \\ 1 & - 3 & 2 \\ 1 & 4 & - 3\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
Now, 
\[\left| A \right|=2 \left( 9 - 8 \right) - 1\left( - 3 - 2 \right) - 1\left( 4 + 3 \right)\]
\[ = 2 + 5 - 7\]
\[ = 0\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 2 \\ 4 & - 3\end{vmatrix} = 1, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ 1 & - 3\end{vmatrix} = 5, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & - 3 \\ 1 & 4\end{vmatrix} = 7\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & - 1 \\ 4 & - 3\end{vmatrix} = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & - 1 \\ 1 & - 3\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 1 \\ 1 & 4\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & - 1 \\ - 3 & 2\end{vmatrix} = 5, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & - 1 \\ 1 & 2\end{vmatrix} = - 5, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 1 \\ 1 & - 3\end{vmatrix} = - 7\]
\[adj A = \begin{bmatrix}1 & 5 & 7 \\ - 1 & - 5 & - 7 \\ 5 & - 5 & - 7\end{bmatrix}^T = \begin{bmatrix}1 & - 1 & 5 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\]
\[ \Rightarrow \left( adj A \right)B = \begin{bmatrix}1 & - 1 & 5 \\ 5 & - 5 & - 5 \\ 7 & - 7 & - 7\end{bmatrix}\begin{bmatrix}7 \\ 1 \\ 5\end{bmatrix}\]
\[ = \begin{bmatrix}7 - 1 + 25 \\ 35 - 5 - 25 \\ 49 - 7 - 35\end{bmatrix} = \begin{bmatrix}32 \\ 5 \\ 6\end{bmatrix}\neq 0\]
The given system of equations is inconsistent . Thus, it has no solution . 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 4 | पृष्ठ २२

संबंधित प्रश्‍न

Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

2x − y = − 2
3x + 4y = 3


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


If \[A = \begin{bmatrix}2 & 4 \\ 4 & 3\end{bmatrix}, X = \binom{n}{1}, B = \binom{ 8}{11}\]  and AX = B, then find n.

Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×