Advertisements
Advertisements
प्रश्न
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
उत्तर
Here,
\[x + y + z = 6 . . . (1)\]
\[x + 2y + 3z = 14 . . . (2)\]
\[x + 4y + 7z = 30 . . . (3)\]
\[or, AX = B \]
where,
\[ A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{vmatrix}\]
\[ = 1\left( 14 - 12 \right) - 1\left( 7 - 3 \right) + 1(4 - 2)\]
\[ = 2 - 4 + 2\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right) = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 3 \\ 4 & 7\end{vmatrix} = 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 3 \\ 1 & 7\end{vmatrix} = - 4 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ 1 & 4\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 4 & 7\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 1 & 7\end{vmatrix} = 6, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 1 & 4\end{vmatrix} = - 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 2 & 3\end{vmatrix} = 1 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 1 & 3\end{vmatrix} = - 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}2 & - 4 & 2 \\ - 3 & 6 & - 3 \\ 1 & - 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[ = \begin{bmatrix}12 - 42 + 30 \\ - 24 + 84 - 60 \\ 12 - 42 + 30\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, } AX=B \text{ has infinitely many solutions}.\]
\[\text{ Substituting z=k in eq. (1) and eq. (2), we get}\]
\[x + y = 6 - k \text{ and }x + 2y = 14 - 3k\]
\[\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}\binom{x}{y} = \binom{6 - k}{14 + 3k}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix}\]
\[ = 2 - 1 = 1 \neq 0\]
\[adj A = \begin{vmatrix}2 & - 1 \\ - 1 & 1\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\binom{6 - k}{14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\binom{12 - 2k - 14 + 3k}{ - 6 + k + 14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{k - 2}{1}}{\frac{8 - 2k}{1}}\]
\[ \therefore x = k - 2, y = 8 - 2k\text{ and }z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = k - 2, y = 8 - 2k\text{ and }z = k \left(\text{ where k is a real number }\right)\text{ satisfy the given system of equations }.\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
x − 2y = 4
−3x + 5y = −7
2x − y = 1
7x − 2y = −7
Prove that :
Prove that
2x − y = 17
3x + 5y = 6
x+ y = 5
y + z = 3
x + z = 4
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x + 2y = 5
3x + 6y = 15
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Write the value of
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.