मराठी

Show that the Following Systems of Linear Equations is Consistent and Also Find Their Solutions: X + Y + Z = 6 X + 2y + 3z = 14 X + 4y + 7z = 30 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30

उत्तर

Here,
\[x + y + z = 6 . . . (1)\]
\[x + 2y + 3z = 14 . . . (2)\]
\[x + 4y + 7z = 30 . . . (3)\]
\[or, AX = B \]
where, 
\[ A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 7\end{vmatrix}\]
\[ = 1\left( 14 - 12 \right) - 1\left( 7 - 3 \right) + 1(4 - 2)\]
\[ = 2 - 4 + 2\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right) = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 3 \\ 4 & 7\end{vmatrix} = 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 3 \\ 1 & 7\end{vmatrix} = - 4 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ 1 & 4\end{vmatrix} = 2\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 4 & 7\end{vmatrix} = - 3, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 1 & 7\end{vmatrix} = 6, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 1 & 4\end{vmatrix} = - 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 2 & 3\end{vmatrix} = 1 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 1 & 3\end{vmatrix} = - 2 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}2 & - 4 & 2 \\ - 3 & 6 & - 3 \\ 1 & - 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}2 & - 3 & 1 \\ - 4 & 6 & - 2 \\ 2 & - 3 & 1\end{bmatrix}\begin{bmatrix}6 \\ 14 \\ 30\end{bmatrix}\]
\[ = \begin{bmatrix}12 - 42 + 30 \\ - 24 + 84 - 60 \\ 12 - 42 + 30\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions.}\]
\[\text{ Thus, } AX=B \text{ has infinitely many solutions}.\]
\[\text{ Substituting z=k in eq. (1) and eq. (2), we get}\]
\[x + y = 6 - k \text{ and }x + 2y = 14 - 3k\]
\[\begin{bmatrix}1 & 1 \\ 1 & 2\end{bmatrix}\binom{x}{y} = \binom{6 - k}{14 + 3k}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 \\ 1 & 2\end{vmatrix}\]
\[ = 2 - 1 = 1 \neq 0\]
\[adj A = \begin{vmatrix}2 & - 1 \\ - 1 & 1\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\begin{bmatrix}2 & - 1 \\ - 1 & 1\end{bmatrix}\binom{6 - k}{14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{1}\binom{12 - 2k - 14 + 3k}{ - 6 + k + 14 - 3k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{k - 2}{1}}{\frac{8 - 2k}{1}}\]
\[ \therefore x = k - 2, y = 8 - 2k\text{ and }z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = k - 2, y = 8 - 2k\text{ and }z = k \left(\text{ where k is a real number }\right)\text{ satisfy the given system of equations }.\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 3.5 | पृष्ठ १५

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


x − 2y = 4
−3x + 5y = −7


2x − y = 1
7x − 2y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

2x − y = 17
3x + 5y = 6


xy = 5
y + z = 3
x + z = 4


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


x + 2y = 5
3x + 6y = 15


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×