Advertisements
Advertisements
प्रश्न
Prove that
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 + 1 & ab & ac\\ab & b^2 + 1 & bc\\ca & cb & c^2 + 1 \end{vmatrix}\]
\[ = \left( abc \right) \begin{vmatrix} a + \frac{1}{a} & b & c\\a & b + \frac{1}{b} & c\\a & b & c + \frac{1}{c} \end{vmatrix} \left[\text{ Taking out a, b and c common from }R_1 , R_2\text{ and }R_3 \right]\]
\[ = \left( abc \right) \begin{vmatrix} a + \frac{1}{a} & b & c\\ - \frac{1}{a} & \frac{1}{b} & 0 \\ - \frac{1}{a} & 0 & \frac{1}{c} \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1\text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( abc \right) \left( \frac{1}{abc} \right)\begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1 \end{vmatrix} \left[\text{ Applying }C_1 \to a C_1 , C_2 \to b C_2\text{ and }C_3 \to c C_3 \right]\]
\[ = \begin{vmatrix} a^2 + 1 & b^2 & c^2 \\ - 1 & 1 & 0 \\ - 1 & 0 & 1 \end{vmatrix}\]
\[ = \left( - 1 \right) \begin{vmatrix} b^2 & c^2 \\ 1 & 0 \end{vmatrix} + \left( 1 \right) \begin{vmatrix} a^2 + 1 & b^2 \\ - 1 & 1 \end{vmatrix} \left[\text{ Expanding along }R_3 \right]\]
\[ = \left( - 1 \right) \left( - c^2 \right) + \left( a^2 + 1 + b^2 \right)\]
\[ = \left( a^2 + 1 + b^2 + c^2 \right)\]
\[ = \left( a^2 + b^2 + c^2 + 1 \right)\]
\[ = RHS\]
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Prove that :
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
The value of the determinant
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
x + y = 1
x + z = − 6
x − y − 2z = 3
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.