Advertisements
Advertisements
प्रश्न
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
पर्याय
4
0
1
none of these
उत्तर
\[\text{ Let }\Delta = \begin{vmatrix} x^2 + 3x & x - 1 x + 3\\x + 1 - 2x & x - 4\\x - 3 & x + 4 3x \end{vmatrix}\]
\[ = \left( x^2 + 3x \right)\begin{vmatrix} - 2x & x - 4\\ x + 4 & 3x \end{vmatrix} - \left( x - 1 \right)\begin{vmatrix} x + 1 & x - 4\\
x - 3 & 3x \end{vmatrix} + \left( x + 3 \right)\begin{vmatrix} x + 1 & - 2x \\x - 3 & x + 4 \end{vmatrix}\]
\[ = \left( x^2 + 3x \right)\left( - 6x - x^2 + 16 \right) - \left( x - 1 \right)\left( 3 x^2 + 3x - x^2 + 7x - 12 \right) + \left( x + 3 \right)\left( x^2 + 5x + 4 + 2 x^2 - 6x \right)\]
\[ = - 7 x^4 + 16 x^2 + 48x + 21 x^3 + 8 x^2 - 22x - 2 x^3 - 12 + 8 x^2 + x + 3 x^3 + 12\]
\[ = - 7 x^4 + 22 x^3 + 32 x^2 + 27x + 0\]
\[\text{ But x is a root of }a x^4 + b x^3 + c x^2 + dx + e . \]
\[ \Rightarrow e = 0\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Show that x = 2 is a root of the equation
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
Prove that
3x + y = 19
3x − y = 23
2x + 3y = 10
x + 6y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
System of equations x + y = 2, 2x + 2y = 3 has ______
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.