Advertisements
Advertisements
प्रश्न
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
उत्तर
Given: 3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
\[D = \begin{vmatrix}3 & 1 & 1 \\ 2 & - 4 & 3 \\ 4 & 1 & - 3\end{vmatrix}\]
\[ = 3\left( 12 - 3 \right) - 2\left( - 3 - 1 \right) + 4\left( 3 + 4 \right)\]
\[ = 27 + 8 + 28\]
\[ = 63\]
\[ D_1 = \begin{vmatrix}2 & 1 & 1 \\ - 1 & - 4 & 3 \\ - 11 & 1 & - 3\end{vmatrix}\]
\[ = 2\left( 12 - 3 \right) + 1\left( - 3 - 1 \right) - 11\left( 3 + 4 \right)\]
\[ = 18 - 4 - 77\]
\[ = - 63\]
\[ D_2 = \begin{vmatrix}3 & 2 & 1 \\ 2 & - 1 & 3 \\ 4 & - 11 & - 3\end{vmatrix}\]
\[ = 3\left( 3 + 33 \right) - 2\left( - 6 + 11 \right) + 4\left( 6 + 1 \right)\]
\[ = 108 - 10 + 28\]
\[ = 126\]
\[ D_3 = \begin{vmatrix}3 & 1 & 2 \\ 2 & - 4 & - 1 \\ 4 & 1 & - 11\end{vmatrix}\]
\[ = 3\left( 44 + 1 \right) - 2\left( - 11 - 2 \right) + 4\left( - 1 + 8 \right)\]
\[ = 135 + 26 + 28\]
\[ = 189\]
\[Now, \]
\[x = \frac{D_1}{D} = \frac{- 63}{63} = - 1\]
\[y = \frac{D_2}{D} = \frac{126}{63} = 2\]
\[z = \frac{D_3}{D} = \frac{189}{63} = 3\]
\[ \therefore x = - 1, y = 2\text{ and }z = 3\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Solve the following determinant equation:
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x + 2y = 5
3x + 6y = 15
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The value of the determinant
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.