मराठी

The Prices of Three Commodities P, Q And R Are Rs X, Y And Z Per Unit Respectively. A Purchases 4 Units Of R And Sells 3 Units Of P And 5 Units Of Q. B Purchases 3 Units Of Q And Sells 2 - Mathematics

Advertisements
Advertisements

प्रश्न

The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

उत्तर

The prices of three commodities P, Q and R are Rs x, Rs y and Rs z per unit, respectively .
According to the question,
\[3x + 5y - 4z = 6000\]
\[2x - 3y + z = 5000\]
\[ - x + 4y + 6z = 13000\]
The given system of equations can be written in matrix form as follows:
\[ \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[AX = B\]
Here,
\[A = \begin{bmatrix}3 & 5 & - 4 \\ 2 & - 3 & 1 \\ - 1 & 4 & 6\end{bmatrix} X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} B = \begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
Now,
\[\left| A \right|=3 \left( - 18 - 4 \right) - 5\left( 12 + 1 \right) - 4\left( 8 - 3 \right)\]
\[ = - 66 - 65 - 20\]
\[ = - 151 \neq 0\]
\[\text{ So, }A^{- 1}\text{ exists .} \]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 3 & 1 \\ 4 & 6\end{vmatrix} = - 22, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ - 1 & 6\end{vmatrix} = - 13, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & - 3 \\ - 1 & 4\end{vmatrix} = 5\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}5 & - 4 \\ 4 & 6\end{vmatrix} = - 46, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}3 & - 4 \\ - 1 & 6\end{vmatrix} = 14, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}3 & 5 \\ - 1 & 4\end{vmatrix} = - 17\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}5 & - 4 \\ - 3 & 1\end{vmatrix} = - 7, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}3 & - 4 \\ 2 & 1\end{vmatrix} = - 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}3 & 5 \\ 2 & - 3\end{vmatrix} = - 19\]
\[adj A = \begin{bmatrix}- 22 & - 13 & 5 \\ - 46 & 14 & - 17 \\ - 7 & - 11 & - 19\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 22 & - 46 & - 7 \\ - 13 & 14 & - 11 \\ 5 & - 17 & - 19\end{bmatrix}\begin{bmatrix}6000 \\ 5000 \\ 13000\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{- 151}\begin{bmatrix}- 453000 \\ - 151000 \\ - 302000\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}3000 \\ 1000 \\ 2000\end{bmatrix}\]
\[ \therefore x = 3000, y = 1000\text{ and }z = 2000\]
Thus, the prices of the three commodities P, Q and R are Rs 3000, Rs 1000 and Rs 2000 per unit, respectively .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 12 | पृष्ठ १६

संबंधित प्रश्‍न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


xy = 5
y + z = 3
x + z = 4


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


x + 2y = 5
3x + 6y = 15


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


System of equations x + y = 2, 2x + 2y = 3 has ______


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×