हिंदी

3x + Y + Z = 2 2x − 4y + 3z = − 1 4x + Y − 3z = − 11 - Mathematics

Advertisements
Advertisements

प्रश्न

3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11

उत्तर

Given: 3x + y + z = 2
            2x − 4y + 3z = − 1
            4x + y − 3z = − 11

\[D = \begin{vmatrix}3 & 1 & 1 \\ 2 & - 4 & 3 \\ 4 & 1 & - 3\end{vmatrix}\] 
\[ = 3\left( 12 - 3 \right) - 2\left( - 3 - 1 \right) + 4\left( 3 + 4 \right)\] 
\[ = 27 + 8 + 28\] 
\[ = 63\] 
\[ D_1 = \begin{vmatrix}2 & 1 & 1 \\ - 1 & - 4 & 3 \\ - 11 & 1 & - 3\end{vmatrix}\] 
\[ = 2\left( 12 - 3 \right) + 1\left( - 3 - 1 \right) - 11\left( 3 + 4 \right)\] 
\[ = 18 - 4 - 77\] 
\[ = - 63\] 
\[ D_2 = \begin{vmatrix}3 & 2 & 1 \\ 2 & - 1 & 3 \\ 4 & - 11 & - 3\end{vmatrix}\] 
\[ = 3\left( 3 + 33 \right) - 2\left( - 6 + 11 \right) + 4\left( 6 + 1 \right)\] 
\[ = 108 - 10 + 28\] 
\[ = 126\] 
\[ D_3 = \begin{vmatrix}3 & 1 & 2 \\ 2 & - 4 & - 1 \\ 4 & 1 & - 11\end{vmatrix}\] 
\[ = 3\left( 44 + 1 \right) - 2\left( - 11 - 2 \right) + 4\left( - 1 + 8 \right)\] 
\[ = 135 + 26 + 28\] 
\[ = 189\] 
\[Now, \] 
\[x = \frac{D_1}{D} = \frac{- 63}{63} = - 1\] 
\[y = \frac{D_2}{D} = \frac{126}{63} = 2\] 
\[z = \frac{D_3}{D} = \frac{189}{63} = 3\] 
\[ \therefore x = - 1, y = 2\text{ and }z = 3\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 11 | पृष्ठ ८४

संबंधित प्रश्न

Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


3x + y = 19
3x − y = 23


2x + 3y = 10
x + 6y = 4


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.

 

2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


System of equations x + y = 2, 2x + 2y = 3 has ______


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×