Advertisements
Advertisements
प्रश्न
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
उत्तर
As per the information given in the question, the following equations hold true:
x + y + z = 12, 2x + 3(y +z) = 33 and x + z -2y = 0
The above three equations can be represented in the form of a matrix as
`[(1,1,1),(2,3,3),(1,-2,1)][(x),(y),(z)]=[(12),(33),(0)]`
Or AX = B, where,`A=[(1,1,1),(2,3,3),(1,-2,1)], X=[(x),(y),(z)] and B=[(12),(33),(0)]`
`|A|=3 !=0` Thus, A is non-singular. Therefore, its inverse exists.
Adj A is given by `[(9,-3,0),(1,0,-1),(-7,3,1)] therefore A^-1=1/|A|(adj A)=1/3[(9,-3,0),(1,0,-1),(-7,3,1)]`
`X=A^-1B=1/3[(9,-3,0),(1,0,-1),(-7,3,1)][(12),(33),(0)]`
`=> [(x),(y),(z)]=1/3[(9,-3,0),(1,0,-1),(-7,3,1)][(12),(33),(0)]=[(3),(4),(5)]`
`therefore x= 3,y=4 and z=5`
Therefore, the number of awardees for Honesty, Cooperation and Supervision are 3, 4, and 5 respectively.
One more value which the management of the colony must include for awards may be Sincerity.
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Show that
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Prove that :
3x + y = 19
3x − y = 23
2x + 3y = 10
x + 6y = 4
9x + 5y = 10
3y − 2x = 8
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Write the value of
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
System of equations x + y = 2, 2x + 2y = 3 has ______
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.