Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} 1 & a^2 + bc & a^3 \\1 & b^2 + ca & b^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ \Rightarrow \Delta = \begin{vmatrix} 0 & \left( a^2 + bc \right) - \left( b^2 + ca \right) & a^3 - b^3 \\0 & \left( b^2 + ca \right) - \left( c^2 + ab \right) & b^3 - c^3 \\1 & c^2 + ab & c \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[= \begin{vmatrix} 0 & a^2 - b^2 - ca + bc & a^3 - b^3 \\0 & b^2 - c^2 - ab + ca & b^3 - c^3 \\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \begin{vmatrix} 0 & \left( a - b \right) \left( a + b - c \right) &\left( a - b \right)\left( a^2 + ab + b^2 \right)\\0 & \left( b - c \right)\left( b + c - a \right) & \left( b - c \right)\left( b^2 + bc + a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) & \left( b^2 + bc + c^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & \left( b + c - a \right) - \left( a + b - c \right) & \left( b^2 + bc + c^2 \right) - \left( a^2 + ab + b^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix} \left[\text{ Applying }R \hspace{0.167em}_2 \to R_2 \hspace{0.167em} - R_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\begin{vmatrix} 0 & a + b - c & a^2 + ab + b^2 \\0 & 2 \left( c - a \right) & b\left( c - a \right) + \left( c^2 - a^2 \right)\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \begin{vmatrix}0 & a + b - c & a^2 + ab + b^2 \\0 & 2 & a + b + c\\1 & c^2 + ab & c^3 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b - c & a^2 + ab + b^2 \\ 2 & a + b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[= \left( a - b \right)\left( b - c \right)\left( c - a \right) \times \left\{ \left( a + b \right)^2 - c^2 - \left( 2 a^2 + 2ab + 2 b^2 \right) \right\}\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\left\{ \left( a + b \right)^2 - c^2 - \left( a + b \right)^2 - \left( a^2 + b^2 \right) \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Solve the following determinant equation:
Solve the following determinant equation:
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
Prove that
2x − y = 17
3x + 5y = 6
5x + 7y = − 2
4x + 6y = − 3
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
The value of the determinant
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.