हिंदी

An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below : - Mathematics

Advertisements
Advertisements

प्रश्न

An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.

उत्तर

Let x, y and z denote the number of cars that can be produced of each type . Then, 
\[2x + 3y + 4z = 29\] 
\[x + y + 2z = 13\] 
\[3x + 2y + z = 16\] 
Using Cramer's rule, we get
\[D = \begin{vmatrix}2 & 3 & 4 \\ 1 & 1 & 2 \\ 3 & 2 & 1\end{vmatrix}\] 
\[ = 2(1 - 4) - 3(1 - 6) + 4(2 - 3)\] 
\[ = - 6 + 15 - 4\] 
\[ = 5\] 
\[ D_1 = \begin{vmatrix}29 & 3 & 4 \\ 13 & 1 & 2 \\ 16 & 2 & 1\end{vmatrix}\] 
\[ = 29(1 - 4) - 3(13 - 32) + 4(26 - 16)\] 
\[ = - 87 + 57 + 40\] 
\[ = 10\] 
\[ D_2 = \begin{vmatrix}2 & 29 & 4 \\ 1 & 13 & 2 \\ 3 & 16 & 1\end{vmatrix}\] 
\[ = 2(13 - 32) - 29(1 - 6) + 4(16 - 39)\] 
\[ = - 38 + 145 - 92\] 
\[ = 15\] 
\[ D_3 = \begin{vmatrix}2 & 3 & 29 \\ 1 & 1 & 13 \\ 3 & 2 & 16\end{vmatrix}\] 
\[ = 2(16 - 26) - 3(16 - 39) + 29(2 - 3)\] 
\[ = - 20 + 69 - 29\] 
\[ = 20\] 
Thus,
\[x = \frac{D_1}{D} = \frac{10}{5} = 2\] 
\[y = \frac{D_2}{D} = \frac{15}{5} = 3\] 
\[z = \frac{D_3}{D} = \frac{20}{5} = 4\]
Therefore, 2 C1 cars, 3 C2 cars and 4 C​3 cars can be produced using the three types of steel.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.4 [पृष्ठ ८५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.4 | Q 32 | पृष्ठ ८५

संबंधित प्रश्न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Find the value of x, if

\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


2x − y = 17
3x + 5y = 6


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


3x + y = 5
− 6x − 2y = 9


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×