English

An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below : - Mathematics

Advertisements
Advertisements

Question

An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.

Solution

Let x, y and z denote the number of cars that can be produced of each type . Then, 
2x+3y+4z=29 
x+y+2z=13 
3x+2y+z=16 
Using Cramer's rule, we get
D=|234112321| 
=2(14)3(16)+4(23) 
=6+154 
=5 
D1=|293413121621| 
=29(14)3(1332)+4(2616) 
=87+57+40 
=10 
D2=|229411323161| 
=2(1332)29(16)+4(1639) 
=38+14592 
=15 
D3=|232911133216| 
=2(1626)3(1639)+29(23) 
=20+6929 
=20 
Thus,
x=D1D=105=2 
y=D2D=155=3 
z=D3D=205=4
Therefore, 2 C1 cars, 3 C2 cars and 4 C​3 cars can be produced using the three types of steel.

 
shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 85]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 32 | Page 85

RELATED QUESTIONS

Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


If A = [2-3532-411-2] find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate

|235712341| by two methods.

 

Find the integral value of x, if |x2x1021314|=28.


For what value of x the matrix A is singular? 

A=[x1111x1111x1]


Without expanding, show that the value of the following determinant is zero:

|1/aa2bc1/bb2ac1/cc2ab|


Without expanding, show that the value of the following determinant is zero:

|1aa2bc1bb2ac1cc2ab|


Without expanding, show that the value of the following determinant is zero:

|(2x+2x)2(2x2x)21(3x+3x)2(3x3x)21(4x+4x)2(4x4x)21|


Evaluate :

|x+λxxxx+λxxxx+λ|


Evaluate the following:

|a+xyzxa+yzxya+z|


Prove the following identity:

|2yyzx2y2z2zzxyxyz2x2x|=(x+y+z)3


Show that

|x+1x+2x+ax+2x+3x+bx+3x+4x+c|= 0 where a, b, c are in A . P .

 


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

|1b+cb2+c21c+ac2+a21a+ba2+b2|=(ab)(bc)(ca)

 


Prove that :

|x+4xxxx+4xxxx+4|=16(3x+4)

|1aa2a21aaa21|=(a31)2

2x − y = − 2
3x + 4y = 3


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Find the value of the determinant |2431563008152100304|.


If the matrix [5x2101]  is singular, find the value of x.


Find the maximum value of |11111+sinθ1111+cosθ|


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

|2aa+ba+cb+a2bb+cc+ac+b2c|
The other factor in the value of the determinant is


If a, b, c are in A.P., then the determinant
|x+2x+3x+2ax+3x+4x+2bx+4x+5x+2c|


If A+B+C=π, then the value of |sin(A+B+C)sin(A+C)cosCsinB0tanAcos(A+B)tan(B+C)0|  is equal to 


The determinant  |b2abbcbcacaba2abb2abbccacaaba2|


 


If x,yR, then the determinant 

=|cosxsinx1sinxcosx1cos(x+y)sin(x+y)0|



Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

x2a2+y2b2z2c2=1,x2a2y2b2+z2c2=1,x2a2+y2b2+z2c2=1 has 
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Write the value of |a-bb-cc-ab-cc-aa-bc-aa-bb-c|


Transform [1243-15246] into an upper triangular matrix by using suitable row transformations


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


|1a2+bca31b2+cab31c2+abc3|


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.