Advertisements
Advertisements
Question
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Solution
Let x, y and z be the rates of commission on items A, B and C respectively. Based on the given data, we get
\[90x + 100y + 20z = 800\]
\[130x + 50y + 40z = 900\]
\[60x + 100y + 30z = 850\]
Dividing all the equations by 10 on both sides, we get
\[9x + 10y + 2z = 80\]
\[13x + 5y + 4z = 90\]
\[6x + 10y + 3z = 85\]
\[D = \begin{vmatrix}9 & 10 & 2 \\ 13 & 5 & 4 \\ 6 & 10 & 3\end{vmatrix} \left[\text{ Expressing the equation as a determinant }\right]\]
\[ = 9(15 - 40) - 10(39 - 24) + 2(130 - 30)\]
\[ = 9( - 25) - 10(15) + 2(100)\]
\[ = - 175\]
\[ D_1 = \begin{vmatrix}80 & 10 & 2 \\ 90 & 5 & 4 \\ 85 & 10 & 3\end{vmatrix}\]
\[ = 80(15 - 40) - 10(270 - 340) + 2(900 - 425)\]
\[ = 80( - 25) - 10( - 70) + 2(475)\]
\[ = - 350\]
\[ D_2 = \begin{vmatrix}9 & 80 & 2 \\ 13 & 90 & 4 \\ 6 & 85 & 3\end{vmatrix}\]
\[ = 9(270 - 340) - 80(39 - 24) + 2(1105 - 540)\]
\[ = 9( - 70) - 80(15) + 2(565)\]
\[ = - 700\]
\[ D_3 = \begin{vmatrix}9 & 10 & 80 \\ 13 & 5 & 90 \\ 6 & 10 & 85\end{vmatrix}\]
\[ = 9(425 - 900) - 10(1105 - 540) + 80(130 - 30)\]
\[ = 9( - 475) - 10(565) + 80(100)\]
\[ = - 1925\]
Thus,
\[x = \frac{D_1}{D} = \frac{- 350}{- 175} = 2\]
\[y = \frac{D_2}{D} = \frac{- 700}{- 175} = 4\]
\[z = \frac{D_3}{D} = \frac{- 1925}{- 175} = 11\]
Therefore, the rates of commission on items A, B and C are 2, 4 and 11, respectively.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
2x + 3y = 10
x + 6y = 4
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
x + y = 1
x + z = − 6
x − y − 2z = 3
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is