English

A Salesman Has the Following Record of Sales During Three Months for Three Items A, B And C Which Have Different Rates of Commission - Mathematics

Advertisements
Advertisements

Question

A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission 

Month Sale of units Total commission
drawn (in Rs)
  A B C  
Jan 90 100 20 800
Feb 130 50 40 900
March 60 100 30 850


Find out the rates of commission on items A, B and C by using determinant method.

Solution

Let x, y and z be the rates of commission on items A, B and C respectively. Based on the given data, we get

\[90x + 100y + 20z = 800\] 
\[130x + 50y + 40z = 900\] 
\[60x + 100y + 30z = 850\]
Dividing all the equations by 10 on both sides, we get
\[9x + 10y + 2z = 80\] 
\[13x + 5y + 4z = 90\] 
\[6x + 10y + 3z = 85\]
\[D = \begin{vmatrix}9 & 10 & 2 \\ 13 & 5 & 4 \\ 6 & 10 & 3\end{vmatrix} \left[\text{ Expressing the equation as a determinant }\right]\] 
\[ = 9(15 - 40) - 10(39 - 24) + 2(130 - 30)\] 
\[ = 9( - 25) - 10(15) + 2(100)\] 
\[ = - 175\] 
\[ D_1 = \begin{vmatrix}80 & 10 & 2 \\ 90 & 5 & 4 \\ 85 & 10 & 3\end{vmatrix}\] 
\[ = 80(15 - 40) - 10(270 - 340) + 2(900 - 425)\] 
\[ = 80( - 25) - 10( - 70) + 2(475)\] 
\[ = - 350\] 
\[ D_2 = \begin{vmatrix}9 & 80 & 2 \\ 13 & 90 & 4 \\ 6 & 85 & 3\end{vmatrix}\] 
\[ = 9(270 - 340) - 80(39 - 24) + 2(1105 - 540)\] 
\[ = 9( - 70) - 80(15) + 2(565)\] 
\[ = - 700\] 
\[ D_3 = \begin{vmatrix}9 & 10 & 80 \\ 13 & 5 & 90 \\ 6 & 10 & 85\end{vmatrix}\] 
\[ = 9(425 - 900) - 10(1105 - 540) + 80(130 - 30)\] 
\[ = 9( - 475) - 10(565) + 80(100)\] 
\[ = - 1925\] 
Thus, 
\[x = \frac{D_1}{D} = \frac{- 350}{- 175} = 2\] 
\[y = \frac{D_2}{D} = \frac{- 700}{- 175} = 4\] 
\[z = \frac{D_3}{D} = \frac{- 1925}{- 175} = 11\]
Therefore, the rates of commission on items A, B and C are 2, 4 and 11, respectively.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 85]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 31 | Page 85

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a & b - c & c - b \\ a - c & b & c - a \\ a - b & b - a & c\end{vmatrix} = \left( a + b - c \right) \left( b + c - a \right) \left( c + a - b \right)\]

 


\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

2x + 3y = 10
x + 6y = 4


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

x + y = 1
x + z = − 6
x − y − 2z = 3


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×