English

Show that the Following Systems of Linear Equations is Consistent and Also Find Their Solutions: X − Y + Z = 3 2x + Y − Z = 2 −X −2y + 2z = 1 - Mathematics

Advertisements
Advertisements

Question

Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1

Solution

 Here,
\[x - y + z = 3 . . . (1)\]
\[2x + y - z = 2 . . . (2)\]
\[ - x - 2y + 2z = 1 . . . (3)\]
or, AX = B
where, 
\[ A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[\begin{bmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{vmatrix}\]
\[ = 1\left( 2 - 2 \right) + 1\left( 4 - 1 \right) + 1( - 4 + 1)\]
\[ = 0 + 3 - 3\]
\[ = 0\]
So, A is singular . Thus, the given system of equations is either inconsistent or it is consistent with 
\[\text{ infinitely many solutions because } \left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & - 1 \\ - 2 & 2\end{vmatrix} = 0, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & - 1 \\ - 1 & 2\end{vmatrix} = - 3, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ - 1 & - 2\end{vmatrix} = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 1 \\ - 2 & 2\end{vmatrix} = 0, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ - 1 & 2\end{vmatrix} = 3, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ - 1 & - 2\end{vmatrix} = 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 1 \\ 1 & - 1\end{vmatrix} = 0, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 2 & - 1\end{vmatrix} = 3 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & 1\end{vmatrix} = 3\]
\[adj A = \begin{bmatrix}0 & - 3 & - 3 \\ 0 & 3 & 3 \\ 0 & 3 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}0 & 0 & 0 \\ - 3 & 3 & 3 \\ - 3 & 3 & 3\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}0 & 0 & 0 \\ - 3 & 3 & 3 \\ - 3 & 3 & 3\end{bmatrix}\begin{bmatrix}3 \\ 2 \\ 1\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ - 9 + 6 + 3 \\ - 9 + 6 + 3\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions. }\]
Thus, AX=B has infinitely many solutions.
\[\text{ Substituting z=k in eq.}\left( 1 \right)\text{ and eq.}\left( 2 \right),\text{ we get }\]
\[x - y = 3 - k\text{ and }2x + y = 2 + k\]
\[\begin{bmatrix}1 & - 1 \\ 2 & 1\end{bmatrix}\binom{x}{y} = \binom{3 - k}{2 + k}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & - 1 \\ 2 & 1\end{vmatrix}\]
\[ = 1 + 2 = 3 \neq 0\]
\[adj A = \begin{vmatrix}1 & 2 \\ - 1 & 1\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{3}\begin{bmatrix}1 & 1 \\ - 2 & 1\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{3}\begin{bmatrix}1 & 1 \\ - 2 & 1\end{bmatrix}\binom{3 - k}{2 + k}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{3}\binom{3 - k + 2 + k}{ - 6 + 2k + 2 + k}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{5}{3}}{\frac{3k - 4}{3}}\]
\[ \therefore x = \frac{5}{3}, y = \frac{3k - 4}{3}\text{ and }z = k\]
These values of x, y and z also satisfy the third equation .
\[\text{ Thus, }x = \frac{5}{3}, y = \frac{3k - 4}{3}\text{ and }z = k \left(\text{ where k is a real number} \right)\text{ satisfy the given system of equations }.\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 15]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 3.4 | Page 15

RELATED QUESTIONS

Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×