Advertisements
Advertisements
Question
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
Solution
The given system of equations can be written as
\[2\lambda x - 2y + 3z = 0\]
\[x + \lambda y + 2z = 0\]
\[2x + 0y + \lambda z = 0\]
The given system of equations will have non - trivial solutions if D = 0 .
\[ \Rightarrow \begin{vmatrix}2\lambda & - 2 & 3 \\ 1 & \lambda & 2 \\ 2 & 0 & \lambda\end{vmatrix} = 0\]
\[ \Rightarrow 2\lambda( \lambda^2 ) + 2(\lambda - 4) + 3( - 2\lambda) = 0\]
\[ \Rightarrow 2 \lambda^3 - 4\lambda - 8 = 0\]
\[ \Rightarrow \lambda = 2\]
\[\text{ So, the given system of equations will have non - trivial solutions if \lambda = 2 . }\]
\[\text{ Now, we shall find solutions for }\lambda = 2 . \]
Replacing z by k in the first two equations, we get
\[2\lambda x - 2y = - 3k\]
\[x + \lambda y = - 2k\]
Solving these by Cramer's rule, we get
\[x = \frac{\begin{vmatrix}- 3k & - 2 \\ - 2k & \lambda\end{vmatrix}}{\begin{vmatrix}2\lambda & - 2 \\ 1 & \lambda\end{vmatrix}} = \frac{- 3k\lambda - 4k}{2 \lambda^2 + 2} = \frac{- 3k(2) - 4k}{2(2 )^2 + 2} = \frac{- 6k - 4k}{10} = - k\]
\[y = \frac{\begin{vmatrix}2\lambda & - 3k \\ 1 & - 2k\end{vmatrix}}{\begin{vmatrix}2\lambda & - 2 \\ 1 & \lambda\end{vmatrix}} = \frac{- 4k\lambda + 3k}{2 \lambda^2 + 2} = \frac{- 4k(2) + 3k}{2(2 )^2 + 2} = \frac{- 5k}{10} = \frac{- k}{2}\]
Substituting these values of x and y in the third equation, we get
\[LHS = 2( - k) + 0( - \frac{k}{2}) + 2(k) = 0 = RHS\]
Thus,
\[\lambda = 2, x = - k, y = - \frac{k}{2} and z = k \left[ k \in R \right]\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Show that x = 2 is a root of the equation
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
Prove that :
Prove that
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x+ y = 5
y + z = 3
x + z = 4
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
If \[x, y \in \mathbb{R}\], then the determinant
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.