मराठी

Find the Real Values Of λ For Which the Following System of Linear Equations Has Non-trivial Solutions. Also, Find the Non-trivial Solutions - Mathematics

Advertisements
Advertisements

प्रश्न

Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\] 
\[ x + \lambda y + 2z = 0\] 
\[ 2x + \lambda z = 0\]

 

उत्तर

The given system of equations can be written as
\[2\lambda x - 2y + 3z = 0\]
\[x + \lambda y + 2z = 0\]
\[2x + 0y + \lambda z = 0\]
The given system of equations will have non - trivial solutions if D = 0 .
\[ \Rightarrow \begin{vmatrix}2\lambda & - 2 & 3 \\ 1 & \lambda & 2 \\ 2 & 0 & \lambda\end{vmatrix} = 0\]
\[ \Rightarrow 2\lambda( \lambda^2 ) + 2(\lambda - 4) + 3( - 2\lambda) = 0\]
\[ \Rightarrow 2 \lambda^3 - 4\lambda - 8 = 0\]
\[ \Rightarrow \lambda = 2\]
\[\text{ So, the given system of equations will have non - trivial solutions if \lambda = 2 . }\]
\[\text{ Now, we shall find solutions for }\lambda = 2 . \]
 Replacing z by k in the first two equations, we get
\[2\lambda x - 2y = - 3k\]
\[x + \lambda y = - 2k\]
Solving these by Cramer's rule, we get
\[x = \frac{\begin{vmatrix}- 3k & - 2 \\ - 2k & \lambda\end{vmatrix}}{\begin{vmatrix}2\lambda & - 2 \\ 1 & \lambda\end{vmatrix}} = \frac{- 3k\lambda - 4k}{2 \lambda^2 + 2} = \frac{- 3k(2) - 4k}{2(2 )^2 + 2} = \frac{- 6k - 4k}{10} = - k\]
\[y = \frac{\begin{vmatrix}2\lambda & - 3k \\ 1 & - 2k\end{vmatrix}}{\begin{vmatrix}2\lambda & - 2 \\ 1 & \lambda\end{vmatrix}} = \frac{- 4k\lambda + 3k}{2 \lambda^2 + 2} = \frac{- 4k(2) + 3k}{2(2 )^2 + 2} = \frac{- 5k}{10} = \frac{- k}{2}\]
Substituting these values of x and y in the third equation, we get
\[LHS = 2( - k) + 0( - \frac{k}{2}) + 2(k) = 0 = RHS\]
Thus,
\[\lambda = 2, x = - k, y = - \frac{k}{2} and z = k \left[ k \in R \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.5 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.5 | Q 4 | पृष्ठ ८९

संबंधित प्रश्‍न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Prove the following identity:

\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


xy = 5
y + z = 3
x + z = 4


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


If xyare different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is





The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×