Advertisements
Advertisements
प्रश्न
Solve the following determinant equation:
उत्तर
\[\text{ Let }∆ = \begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix}\]
\[ = \begin{vmatrix}x + 9 & 3 & 5 \\ x + 9 & x + 2 & 5 \\ x + 9 & 3 & x + 4\end{vmatrix} \left[\text{ Applying }C_1 = C_1 + C_2 + C_3 \right]\]
\[ = \left( x + 9 \right)\begin{vmatrix}1 & 3 & 5 \\ 1 & x + 2 & 5 \\ 1 & 3 & x + 4\end{vmatrix} \]
\[ = \left( x + 9 \right)\begin{vmatrix}1 & 3 & 5 \\ 0 & x - 1 & 0 \\ 1 & 3 & x + 4\end{vmatrix} \left[\text{ Applying }R_2 \text{ to } R_2 - R_1 \right]\]
\[ = \left( x + 9 \right)\begin{vmatrix}1 & 3 & 5 \\ 0 & x - 1 & 0 \\ 0 & 0 & x - 1\end{vmatrix} \left[\text{ Applying }R_3 \text{ to } R_3 - R_1 \right]\]
\[ ∆ = \left( x + 9 \right) \left( x - 1 \right)^2 = 0\]
\[x = - 9, 1, 1\]
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
9x + 5y = 10
3y − 2x = 8
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.