Advertisements
Advertisements
प्रश्न
Solve the following determinant equation:
उत्तर
\[\text{ Let }∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix}\]
\[ = \begin{vmatrix}1 & x & x^2 \\ 0 & x - a & x^2 - a^2 \\ 1 & b & b^2\end{vmatrix} \left[\text{ Applying }R_2 \text{ to }R_1 - R_2 \right]\]
\[ = \begin{vmatrix}1 & x & x^2 \\ 0 & x - a & x^2 - a^2 \\ 0 & x - b & x^2 - b^2\end{vmatrix} \left[\text{ Applying }R_3 \text{ to }R_1 - R_3 \right]\]
\[ = \left( x - a \right)\left( x - b \right)\begin{vmatrix}1 & x & x^2 \\ 0 & 1 & x + a \\ 0 & 1 & x + b\end{vmatrix} \]
\[ ∆ = \left( x - a \right)\left( x - b \right)\left( x + b - x - a \right) = 0\]
\[x = a, b\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Solve the following determinant equation:
Prove that :
5x + 7y = − 2
4x + 6y = − 3
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
3x + y = 5
− 6x − 2y = 9
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.