Advertisements
Advertisements
प्रश्न
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
उत्तर
Here,
\[2x + 2y - 2z = 1 . . . (1) \]
\[4x + 4y - z = 2 . . . (2) \]
\[6x + 6y + 2z = 3 . . . (3) \]
\[or, AX = B\]
\[\text{ where, }A = \begin{bmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[\begin{bmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{vmatrix}\]
\[ = 2\left( 8 + 6 \right) - 2\left( 8 + 6 \right) - 2(24 - 24)\]
\[ = 28 - 28 - 0\]
\[ = 0\]
So, A is singular . Thus, the system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]\text{. Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}4 & - 1 \\ 6 & 2\end{vmatrix} = 14, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & - 1 \\ 6 & 2\end{vmatrix} = - 14, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & 4 \\ 6 & 6\end{vmatrix} = 0\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}2 & - 2 \\ 6 & 2\end{vmatrix} = - 16, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & - 2 \\ 6 & 2\end{vmatrix} = 16, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 2 \\ 6 & 6\end{vmatrix} = 0\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix} = 6, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix} = - 6, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 2 \\ 4 & 4\end{vmatrix} = 0\]
\[adj A = \begin{bmatrix}14 & - 14 & 0 \\ - 16 & 16 & 0 \\ 6 & - 6 & 0\end{bmatrix}^T \]
\[ = \begin{bmatrix}14 & - 16 & 6 \\ - 14 & 16 & - 6 \\ 0 & 0 & 0\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}14 & - 16 & 6 \\ - 14 & 16 & - 6 \\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[ = \begin{bmatrix}14 - 32 + 18 \\ - 14 + 32 - 18 \\ 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions}.\]
Thus, AX=B has infinitely many solutions.
Substituting y=k in eq. (1) and eq. (2), we get
\[2x - 2z = 1 - 2k\text{ and }4x - z = 2 - 4k\]
\[\begin{bmatrix}2 & - 2 \\ 4 & - 1\end{bmatrix}\binom{x}{z} = \binom{1 - 2k}{2 - 4k}\]
Now,
\[\left| A \right| = \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix}\]
\[ = - 2 + 8 = 6 \neq 0\]
\[adj A = \begin{vmatrix}- 1 & 2 \\ - 4 & 2\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{6}\begin{bmatrix}- 1 & 2 \\ - 4 & 2\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{z} = \frac{1}{6}\begin{bmatrix}- 1 & 2 \\ - 4 & 2\end{bmatrix}\binom{1 - 2k}{2 - 4k}\]
\[ \Rightarrow \binom{x}{z} = \frac{1}{6}\binom{ - 1 + 2k + 4 - 8k}{ - 4 + 8k + 4 - 8k}\]
\[ \Rightarrow \binom{x}{z} = \binom{\frac{3 - 6k}{6}}{0}\]
\[ \therefore x = \frac{1 - 2k}{2}, y = k \hspace{0.167em}\text{ and } z = 0 \]
These values of x, y and z satisfy the third equation .
\[\text{ Thus, } x = \frac{1 - 2k}{2}, y = k\text{ and }z = 0 \left(\text{ where k is real number } \right)\text{ satisfy the given system of equations } .\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Show that x = 2 is a root of the equation
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
x − 2y = 4
−3x + 5y = −7
2x + 3y = 10
x + 6y = 4
Given: x + 2y = 1
3x + y = 4
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
x + 2y = 5
3x + 6y = 15
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
The value of the determinant
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if