Advertisements
Advertisements
Question
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Solution
Here,
\[2x + 2y - 2z = 1 . . . (1) \]
\[4x + 4y - z = 2 . . . (2) \]
\[6x + 6y + 2z = 3 . . . (3) \]
\[or, AX = B\]
\[\text{ where, }A = \begin{bmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }B = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[\begin{bmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}2 & 2 & - 2 \\ 4 & 4 & - 1 \\ 6 & 6 & 2\end{vmatrix}\]
\[ = 2\left( 8 + 6 \right) - 2\left( 8 + 6 \right) - 2(24 - 24)\]
\[ = 28 - 28 - 0\]
\[ = 0\]
So, A is singular . Thus, the system of equations is either inconsistent or it is consistent with
\[\text{ infinitely many solutions because }\left( adj A \right)B \neq 0\text{ or }\left( adj A \right)B = 0 . \]
\[ {\text{ Let }C}_{ij} {\text{ be the co-factors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right]\text{. Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}4 & - 1 \\ 6 & 2\end{vmatrix} = 14, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}4 & - 1 \\ 6 & 2\end{vmatrix} = - 14, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}4 & 4 \\ 6 & 6\end{vmatrix} = 0\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}2 & - 2 \\ 6 & 2\end{vmatrix} = - 16, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & - 2 \\ 6 & 2\end{vmatrix} = 16, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 2 \\ 6 & 6\end{vmatrix} = 0\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix} = 6, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix} = - 6, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 2 \\ 4 & 4\end{vmatrix} = 0\]
\[adj A = \begin{bmatrix}14 & - 14 & 0 \\ - 16 & 16 & 0 \\ 6 & - 6 & 0\end{bmatrix}^T \]
\[ = \begin{bmatrix}14 & - 16 & 6 \\ - 14 & 16 & - 6 \\ 0 & 0 & 0\end{bmatrix}\]
\[\left( adj A \right)B = \begin{bmatrix}14 & - 16 & 6 \\ - 14 & 16 & - 6 \\ 0 & 0 & 0\end{bmatrix}\begin{bmatrix}1 \\ 2 \\ 3\end{bmatrix}\]
\[ = \begin{bmatrix}14 - 32 + 18 \\ - 14 + 32 - 18 \\ 0\end{bmatrix}\]
\[ = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[\text{ If }\left| A \right|=0\text{ and }\left( adjA \right)B=0, \text{ then the system is consistent and has infinitely many solutions}.\]
Thus, AX=B has infinitely many solutions.
Substituting y=k in eq. (1) and eq. (2), we get
\[2x - 2z = 1 - 2k\text{ and }4x - z = 2 - 4k\]
\[\begin{bmatrix}2 & - 2 \\ 4 & - 1\end{bmatrix}\binom{x}{z} = \binom{1 - 2k}{2 - 4k}\]
Now,
\[\left| A \right| = \begin{vmatrix}2 & - 2 \\ 4 & - 1\end{vmatrix}\]
\[ = - 2 + 8 = 6 \neq 0\]
\[adj A = \begin{vmatrix}- 1 & 2 \\ - 4 & 2\end{vmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{6}\begin{bmatrix}- 1 & 2 \\ - 4 & 2\end{bmatrix}\]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{z} = \frac{1}{6}\begin{bmatrix}- 1 & 2 \\ - 4 & 2\end{bmatrix}\binom{1 - 2k}{2 - 4k}\]
\[ \Rightarrow \binom{x}{z} = \frac{1}{6}\binom{ - 1 + 2k + 4 - 8k}{ - 4 + 8k + 4 - 8k}\]
\[ \Rightarrow \binom{x}{z} = \binom{\frac{3 - 6k}{6}}{0}\]
\[ \therefore x = \frac{1 - 2k}{2}, y = k \hspace{0.167em}\text{ and } z = 0 \]
These values of x, y and z satisfy the third equation .
\[\text{ Thus, } x = \frac{1 - 2k}{2}, y = k\text{ and }z = 0 \left(\text{ where k is real number } \right)\text{ satisfy the given system of equations } .\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
x + 2y = 5
3x + 6y = 15
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.