English

Solve the following system of equations by using inversion method x + y = 1, y + z = 53, z + x = 43 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`

Sum

Solution

Matrix form of the given system of equations is

`[(1, 1, 0),(0, 1, 1),(1, 0, 1)] [(x),(y),(z)] [(1),(5/3),(4/3)]`

This is of the form AX = B,

where A = `[(1, 1, 0),(0, 1, 1),(1, 0, 1)]` X = `[(x),(y),(z)]` B = `[(1),(5/3),(4/3)]`

Pre-multiplying AX = B by A−1, we get

A−1(AX) = A−1B

∴ (A−1A)X = A−1B

∴ IX = A−1B

∴ X = A−1B      .......(i)

To determine X, we have to find A−1

|A| = `1|(1, 1),(0, 1)| - 1|(0, 1),(1, 1)| + 0`

= 1(1 – 0) –1(0 – 1)

= 1 + 1

= 2 ≠ 0

∴ A−1 exists.

Consider, AA−1 = I

∴ `[(1, 1, 0),(0, 1, 1),(1, 0, 1)]` A−1 = `[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

Applying R3 → R3 – R1, we get

`[(1, 1, 0),(0, 1, 1),(1, -1, 1)]` A−1 = `[(1, 0, 0),(0, 1, 0),(-1, 0, 1)]`

Applying R2 → R2 − R3, we get

`[(1, 1, 0),(0, 2, 0),(0, -1, 1)]` A−1 = `[(1, 0, 0),(1, 1, -1),(-1, 0, 1)]`

Applying R1 → `(1/2)` R2, we get

`[(1, 1, 0),(0, 1, 0),(0, -1, 1)]` A−1 = `[(1, 0, 0),(1/2, 1/2, -1/2),(-1, 0, 1)]`

Applying R1 → R1 − R2, we get

`[(1, 1, 0),(0, 1, 0),(0, -1, 1)]` A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1, 0, 1)]`

Applying R3 → R3 + R2, we get

`[(1, 1, 0),(0, 1, 0),(0, 0, 1)]` A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)]`

∴ A−1 = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)]`

∴ X = `[(1/2, 1/2, 1/2),(1/2, 1/2, -1/2),(-1/2, 1/2, 1/2)] [(1),(5/3),(4/3)]`       .......[From (i)]

∴ `[(x),(y),(z)] = [(1/3),(2/3),(3/1)]`

∴ By equality of matrices, we get

x = `1/3` y = `2/3` and z = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.2: Matrics - Long Answers III

RELATED QUESTIONS

Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


Prove that

\[\begin{vmatrix}a^2 & 2ab & b^2 \\ b^2 & a^2 & 2ab \\ 2ab & b^2 & a^2\end{vmatrix} = \left( a^3 + b^3 \right)^2\]

2x − y = − 2
3x + 4y = 3


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


If A is a singular matrix, then write the value of |A|.

 

If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]

 


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


The value of λ, such that the following system of equations has no solution, is

`2x - y - 2z = - 5`

`x - 2y + z = 2`

`x + y + lambdaz = 3`


If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×