English

The Number of Distinct Real Roots of ∣ ∣ ∣ ∣ C O S E C X Sec X Sec X Sec X C O S E C X Sec X Sec X Sec X C O S E C X ∣ ∣ ∣ ∣ = 0 Lies in the Interval − π 4 ≤ X ≤ π 4 (A) 1 (B) 2 (C) 3 (D) 0 - Mathematics

Advertisements
Advertisements

Question

The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]

Options

  • 1

  • 2

  • 3

  • 0

MCQ

Solution


\[\text{ Let }∆ = \begin{vmatrix} cosec x & \sec x & \sec x\\\sec x & cosec x & \sec x\\\sec x & \sec x & cosec x \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 &\frac{\sec x}{cosec x} & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} & 1 & \frac{\sec x}{cosec x}\\\frac{\sec x}{cosec x} &\frac{\sec x}{cosec x} & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 & \tan x & \tan x \\\tan x & 1 & \tan x\\\tan x & \tan x & 1 \end{vmatrix}\]
\[ = \left( cosec x \right)^3 \begin{vmatrix} 1 - \tan x & \tan x - 1 & 0 \\ 0 & 1 - \tan x & \tan x - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2 , R_2 \to R_2 - R_3 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \begin{vmatrix} 1 & - 1 & 0 \\ 0 & 1 & - 1\\\tan x & \tan x & 1 \end{vmatrix} \left[\text{ Taking out }\left( 1 - \tan x \right)\text{ common from }R_1\text{ and }R_2 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1\begin{vmatrix}1 & - 1 \\ \tan x & 1\end{vmatrix} + \tan x\begin{vmatrix}- 1 & 0 \\ 1 & - 1\end{vmatrix} \right\} \left[ \text{ Expanding along }C_1 \right]\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + \tan x + \tan x \right\}\]
\[ = \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left\{ 1 + 2 \tan x \right\}\]
\[ ∆ = 0\]
\[ \left( cosec x \right)^3 \left( 1 - \tan x \right)^2 \left( 1 + 2 \tan x \right) = 0\]
\[ \Rightarrow \left( 1 - \tan x \right) = 0, \left( cosec x \right)^3 = 0\text{ and }\left( 1 + 2 \tan x \right) = 0\]
or
\[\tan x = 1, cosec x = 0\text{ and }\tan x = \frac{- 1}{2}\]
\[ \Rightarrow - \frac{\pi}{4} \leq x \leq \frac{\pi}{4} \left[ \tan x = 1, \tan x = \frac{- 1}{2}\text{ are 2 real roots as cosec x = 0 has no solution }\right]\]
Thus, there are 2 solutions . 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.7 [Page 95]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.7 | Q 20 | Page 95

RELATED QUESTIONS

Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


If \[a, b\] and c  are all non-zero and 

\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c\end{vmatrix} =\] 0, then prove that 
\[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} +\]1
= 0

 


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}\left( a + 1 \right) \left( a + 2 \right) & a + 2 & 1 \\ \left( a + 2 \right) \left( a + 3 \right) & a + 3 & 1 \\ \left( a + 3 \right) \left( a + 4 \right) & a + 4 & 1\end{vmatrix} = - 2\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


Given: x + 2y = 1
            3x + y = 4


x + 2y = 5
3x + 6y = 15


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


Write the value of 

\[\begin{vmatrix}\sin 20^\circ & - \cos 20^\circ\\ \sin 70^\circ& \cos 70^\circ\end{vmatrix}\]

Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

System of equations x + y = 2, 2x + 2y = 3 has ______


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×