Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= \Delta = \begin{vmatrix} \left( a + 1 \right)\left( a + 2 \right) & a + 2 & 1\\\left( a + 2 \right)\left( a + 3 \right) & a + 3 & 1 \\\left( a + 3 \right)\left( a + 4 \right) & a + 4 & 1 \end{vmatrix}\]
\[ = \begin{vmatrix} \left( a + 1 \right)\left( a + 2 \right) - \left( a + 2 \right)\left( a + 3 \right) & \left( a + 2 \right) - \left( a + 3 \right) & 0\\\left( a + 2 \right)\left( a + 3 \right) - \left( a + 3 \right)\left( a + 4 \right) & \left( a + 3 \right) - \left( a + 4 \right) & 0 \\\left( a + 3 \right)\left( a + 4 \right) & \left( a + 4 \right) & 1 \end{vmatrix} \left[\text{ Applying }C_1 \to \hspace{0.167em} C_1 - C_2\text{ and }C_2 \to C_2 - C_3 \right]\]
\[ = \begin{vmatrix} - 2\left( a + 2 \right) & - 1 & 0\\ - 2\left( a + 3 \right) & - 1 & 0\\\left( a + 3 \right)\left( a + 4 \right) & \left( a + 4 \right) & 1 \end{vmatrix}\]
\[ = \left\{ 1 \times \begin{vmatrix} - 2\left( a + 2 \right) & - 1 \\- 2\left( a + 3 \right) & - 1 \end{vmatrix} \right\} \left[\text{ Expanding along }C_3 \right]\]
\[ = 4 + 2a - 2a - 6\]
\[ = - 2\]
\[ = RHS\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of the determinant
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.