Advertisements
Advertisements
Question
If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + z = 7.
Solution
\[\text { Here }, \]
\[ A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\]
\[\left| A \right|=1 \left( 1 + 6 \right) + 2\left( 2 - 0 \right) + 0\left( - 4 - 0 \right)\]
\[ = 7 + 4 + 0\]
\[ = 11\]
\[\text{Let C_ij {be the cofactors of the elements a}_ij in A}=\left[ a_ij \right]. \text { Then },\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 3 \\ - 2 & 1\end{vmatrix} = 7, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 3 \\ 0 & 1\end{vmatrix} = - 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ 0 & - 2\end{vmatrix} = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 2 & 0 \\ - 2 & 1\end{vmatrix} = 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 0 \\ 0 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 2 \\ 0 & - 2\end{vmatrix} = 2\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 2 & 0 \\ 1 & 3\end{vmatrix} = - 6, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 0 \\ 2 & 3\end{vmatrix} = - 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 2 \\ 2 & 1\end{vmatrix} = 5\]
\[\therefore adj A = \begin{bmatrix}7 & - 2 & - 4 \\ 2 & 1 & 2 \\ - 6 & - 3 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{11}\begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\]
\[or, AX = B\]
\[\text { where }, A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} \text { and }B = \begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
\[\text { Now }, \]
\[ \therefore X = A^{- 1} B\]
\[ \Rightarrow X = \frac{1}{11}\begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]
\[ \Rightarrow X = \frac{1}{11}\begin{bmatrix}70 + 16 - 42 \\ - 20 + 8 - 21 \\ - 40 + 16 + 35\end{bmatrix}\]
\[\Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{11}\begin{bmatrix}44 \\ - 33 \\ 11\end{bmatrix}\]
\[ \therefore x = 4, y = - 3 \text { and } z = 1\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Prove that :
Prove that
2x + 3y = 10
x + 6y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Write the value of
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.