Advertisements
Advertisements
Question
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
Solution
If the points (k, 2 − 2 k), (− k + 1, 2k) and (− 4 − k, 6 − 2k) are collinear, then
\[∆ = \begin{vmatrix}k & 2 - 2k & 1 \\ - k + 1 & 2k & 1 \\ - 4 - k & 6 - 2k & 1\end{vmatrix} = 0\]
\[ \Rightarrow \begin{vmatrix}k & 2 - 2k & 1 \\ - 2k + 1 & 4k - 2 & 0 \\ - 4 - k & 6 - 2k & 1\end{vmatrix} = 0 \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ \Rightarrow \begin{vmatrix}k & 2 - 2k & 1 \\ - 2k + 1 & 4k - 2 & 0 \\ - 4 - 2k & 4 & 0\end{vmatrix} = 0 \left[\text{ Applying } R_3 \to R_3 - R_1 \right]\]
\[ \Rightarrow \begin{vmatrix}- 2k + 1 & 4k - 2 \\ - 4 - 2k & 4\end{vmatrix} = 0\]
\[ \Rightarrow - 8k + 4 + 16k - 8 + 8 k^2 - 4k = 0 \]
\[ \Rightarrow 8 k^2 + 4k - 4 = 0\]
\[ \Rightarrow \left( 8k - 4 \right)\left( k + 1 \right) = 0\]
\[ \Rightarrow k = - 1\text{ or }k = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 2y = 3
3x + 2y = 5
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
System of equations x + y = 2, 2x + 2y = 3 has ______
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.