हिंदी

If a = ⎡ ⎢ ⎣ 1 − 2 0 2 1 3 0 − 2 1 ⎤ ⎥ ⎦ ,Find A–1 and Hence Solve the System of Equations X – 2y = 10, 2x + Y + 3z = 8 and –2y + Z = 7. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] ,find A–1 and hence solve the system of equations x – 2y = 10, 2x + y + 3z = 8 and –2y + = 7.

उत्तर

\[\text { Here }, \]

\[ A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\]

\[\left| A \right|=1 \left( 1 + 6 \right) + 2\left( 2 - 0 \right) + 0\left( - 4 - 0 \right)\]

\[ = 7 + 4 + 0\]

\[ = 11\]

\[\text{Let C_ij {be the cofactors of the elements a}_ij in A}=\left[ a_ij \right]. \text { Then },\]

\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 3 \\ - 2 & 1\end{vmatrix} = 7, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 3 \\ 0 & 1\end{vmatrix} = - 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ 0 & - 2\end{vmatrix} = - 4\]

\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 2 & 0 \\ - 2 & 1\end{vmatrix} = 2, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 0 \\ 0 & 1\end{vmatrix} = 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 2 \\ 0 & - 2\end{vmatrix} = 2\]

\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 2 & 0 \\ 1 & 3\end{vmatrix} = - 6, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 0 \\ 2 & 3\end{vmatrix} = - 3, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 2 \\ 2 & 1\end{vmatrix} = 5\]

\[\therefore adj A = \begin{bmatrix}7 & - 2 & - 4 \\ 2 & 1 & 2 \\ - 6 & - 3 & 5\end{bmatrix}^T \]

\[ = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\]

\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]

\[ = \frac{1}{11}\begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\]

\[or, AX = B\]

\[\text { where }, A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix} \text { and }B = \begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]

\[\text { Now }, \]

\[ \therefore X = A^{- 1} B\]

\[ \Rightarrow X = \frac{1}{11}\begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\begin{bmatrix}10 \\ 8 \\ 7\end{bmatrix}\]

\[ \Rightarrow X = \frac{1}{11}\begin{bmatrix}70 + 16 - 42 \\ - 20 + 8 - 21 \\ - 40 + 16 + 35\end{bmatrix}\]

\[\Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{11}\begin{bmatrix}44 \\ - 33 \\ 11\end{bmatrix}\]

\[ \therefore x = 4, y = - 3 \text { and } z = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Foreign Set 3

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


2x + 3y = 10
x + 6y = 4


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×