हिंदी

Prove that : ∣ ∣ ∣ ∣ ∣ 1 B + C B 2 + C 2 1 C + a C 2 + a 2 1 a + B a 2 + B 2 ∣ ∣ ∣ ∣ ∣ = ( a − B ) ( B − C ) ( C − a ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 

उत्तर

\[\text{ Let LHS }= ∆ = \begin{vmatrix} 1 & b + c & b^2 + c^2 \\1 & c + a & c^2 + a^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\]

\[ \Rightarrow ∆ = \begin{vmatrix} 0 & ( b + c ) - ( c + a ) & ( b^2 + c^2 ) - ( c^2 + a^2 \\0 &( c + a ) - ( a + b ) & ( c^2 + a^2 ) - ( a^2 + b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right] \] 
\[ = \begin{vmatrix} 0 & b - a & b^2 - a^2 \\0 & c - b & c^2 - b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\] 
\[ = \left( - 1 \right)^2 \begin{vmatrix} 0 & a - b & a^2 - b^2 \\0 & b - c & b^2 - c^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Taking out }\left( - 1 \right)\text{ common from }R_1 \text{ and }R_2 \right]\] 
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} 0 & 1 & a + b\\0 & 1 & b + c\\1 & a + b & a^2 + b^2 \end{vmatrix}\] 
\[ = \left( a - b \right)\left( b - c \right)\left\{ 1 \times \begin{vmatrix} 1 & a + b\\1 & b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\] 
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\] 
\[ = RHS\] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 16 | पृष्ठ ५९

संबंधित प्रश्न

Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]


Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


3x + y = 5
− 6x − 2y = 9


3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1


If A is a singular matrix, then write the value of |A|.

 

Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


Let A = `[(i, -i),(-i, i)], i = sqrt(-1)`. Then, the system of linear equations `A^8[(x),(y)] = [(8),(64)]` has ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×