Advertisements
Advertisements
प्रश्न
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
विकल्प
\[∆_1 + ∆_2 = 0\]
\[∆_1 + 2 ∆_2 = 0\]
\[∆_1 = ∆_2\]
none of these
उत्तर
(a) \[∆_1 + ∆_2 = 0\]
\[\Delta_{2 =} \begin{vmatrix} 1 & bc & a\\1 & ca & b\\1 & ab & c \end{vmatrix}\]
\[ = \frac{1}{abc}\begin{vmatrix} a & abc & a^2 \\b & bca & b^2 \\c & cab & c^2 \end{vmatrix} [ R_1 , R_2 , R_3\text{ are multiplied by a, b and c respectively, therefore we divide by abc}]\]
\[ = \frac{abc}{abc} \begin{vmatrix} a & 1 & a^2 \\b & 1 & b^2 \\c & 1 & c^2 \end{vmatrix} \left[\text{ Taking abc common from }C_2 \right]\]
\[ = - \begin{vmatrix} 1 & a & a^2 \\1 & b & b^2 \\1 & c & c^2 \end{vmatrix} C_1 \leftrightarrow C_2 \]
We know that the value of a determinant remains unchanged if its rows and columns are interchanged . So,
\[ ∆_2 = - \begin{vmatrix} 1 & 1 & 1\\a & b & c\\ a^2 & b^2 & c^2 \end{vmatrix} \]
\[ = - \Delta_1 \]
\[ \Rightarrow \Delta_1 + \Delta_2 = 0\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that :
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
For what value of x, the following matrix is singular?
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
x + y = 1
x + z = − 6
x − y − 2z = 3
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.