Advertisements
Advertisements
प्रश्न
For what value of x, the following matrix is singular?
उत्तर
If a matrix A is singular, then \[\left| A \right| = 0\]
\[\therefore \begin{vmatrix}5 - x & x + 1 \\ 2 & 4\end{vmatrix} = 0\]
\[\Rightarrow 4(5 - x) - 2(x + 1) 0\]
\[ \Rightarrow 20 - 4x - 2x - 2\]
\[ \Rightarrow 18 - 6x = 0\]
\[ \Rightarrow 18 = 6x\]
\[ \Rightarrow x = 3\]
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Prove that :
Prove that :
2x − y = 17
3x + 5y = 6
3x + ay = 4
2x + ay = 2, a ≠ 0
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\] lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.