हिंदी

Solve the Following System of Equations by Matrix Method: 3x + Y = 19 3x − Y = 23 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23

उत्तर

The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}3 & 1 \\ 3 & - 1\end{bmatrix} \binom{x}{y} = \binom{19}{23}\]
\[AX=B\]
Here, 
\[A = \begin{bmatrix}3 & 1 \\ 3 & - 1\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{19}{23}\]
Now,
\[\left| A \right| = \begin{bmatrix}3 & 1 \\ 3 & - 1\end{bmatrix} \]
\[ = - 3 - 3\]
\[ = - 6 \neq 0\]
\[\text{ So, the given system has a unique solution given by }X = A^{- 1} B . \]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( - 1 \right) = - 1, C_{12} = \left( - 1 \right)^{1 + 2} \left( 3 \right) = - 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 1 \right) = - 1, C_{22} = \left( - 1 \right)^{2 + 2} \left( 3 \right) = 3\]
\[adj A = \begin{bmatrix}- 1 & - 3 \\ - 1 & 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 1 & - 1 \\ - 3 & 3\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 6}\begin{bmatrix}- 1 & - 1 \\ - 3 & 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{- 6}\begin{bmatrix}- 1 & - 1 \\ - 3 & 3\end{bmatrix}\binom{19}{23}\]
\[ = \frac{1}{- 6}\binom{ - 19 - 23}{ - 57 + 69}\]
\[ = \binom{x}{y}\]
\[ = \binom{\frac{- 42}{- 6}}{\frac{12}{- 6}}\]
\[ \therefore x = 7\text{ and }y = - 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 1.4 | पृष्ठ १४

संबंधित प्रश्न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & x & x \\ x & x + a & x \\ x & x & x + a\end{vmatrix} = 0, a \neq 0\]

 


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


The maximum value of  \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)

 





Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations: 

x +y + z = 6

y + 3z = 11

and x -2y +z = 0


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×