Advertisements
Advertisements
प्रश्न
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
विकल्प
7
10
1
17
उत्तर
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
\[ = \begin{vmatrix} \log_3 2^9 & \log_{2^2} 3 \\ \log_3 2^3 & \log_{2^2} 3^3 \end{vmatrix} \times \begin{vmatrix} \log_2 3 & \log_{2^3} 3\\ \log_3 2^2 & \log_3 2^2 \end{vmatrix}\]
\[ = \begin{vmatrix} 9 \log_3 2 & \frac{1}{2} \log_2 3 \\ 3 \log_3 2 & \frac{1}{2} \times 2 \log_2 3 \end{vmatrix} \times \begin{vmatrix} \log_2 3 & \frac{1}{3} \log_2 3\\ 2 \log_3 2 & 2 \log_3 2 \end{vmatrix} \left[ \because \log {}_{b^m} a^n = \frac{n}{m} \log_b a \right]\]
\[ = \left( \left( 9 \log_3 2 \times \log_2 3 \right) - \left( 3 \log_3 2 \times \frac{1}{2} \log_2 3 \right) \right) \times \left( \left( \log_2 3 \times 2 \log_3 2 \right) - \left( \frac{1}{3} \log_2 3 \times 2 \log_3 2 \right) \right) \left[ \because \log_m n \times \log_n m = 1 \right]\]
\[ = \left( 9 - \frac{3}{2} \right) \times \left( 2 - \frac{2}{3} \right)\]
\[ = \frac{15}{2} \times \frac{4}{3} = 10\]
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
If \[a, b\] and c are all non-zero and
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
Prove that
3x + ay = 4
2x + ay = 2, a ≠ 0
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Write the value of the determinant
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?