हिंदी

Solve the system of linear equations using the matrix method. x − y + 2z = 7 3x + 4y − 5z = −5 2x − y + 3z = 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the system of linear equations using the matrix method.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12

योग

उत्तर

`[(1,-1,2),(3,4,-5),(2,-1,3)] [(x),(y),(z)] = [(7),(-5),(12)]` AX = B

A = `[(1,-1,2),(3,4,-5),(2,-1,3)] X = [(x),(y),(z)]`

or B = `[(7),(-5),(12)]`

Now, `abs "A" = [(1,-1,2),(3,4,-5),(2,-1,3)]`

`= 1 (12 - 5) + 1 (9 + 10) + 2 (-3 - 8)`

`= 7 + 19 - 22 = 4 ne 0`

`=> A^-1` exists and hence the given equation has a unique solution.

`A_11 = (-1)^(1 + 1) abs ((4,-5),(-1,3)) = 12-5 = 7`

`A_12 = (-1)^(1 + 2) abs ((3,-5),(2,3)) = -(9 + 10) = -19`

`A_13 = (-1)^(1 + 3) abs ((3,4),(2,-1)) = -3 - 8 = -11`

`A_21 = (-1)^(2 + 1) abs ((-1,2),(-1,3)) = -(-3 + 2) = 1`

`A_22 = (-1)^(2 + 2) abs ((1,2),(1,3)) = 3 - 4 = -1`

`A_23 = (-1)^(2 + 3) abs((1,-1),(2,-1)) = -1(-1 + 2) = -1`

`A_31 = (-1)^ (3 + 1) abs ((-1,2),(4,-5)) = 5 - 8 = -3`

`A_32 = (-1)^(3 + 2) abs ((1,2),(3,-5)) = -(-5 - 6) = 11`

`A_33 = (-1)^(3 + 3) abs ((1,-1),(3, 4)) = 4 + 3 = 7`

`therefore A^-1 = 1/abs A (Adj A)`

`= 1/4 [(7,-19,-11),(1,1,-1),(-3,11,7)]`

`= 1/4 [(7,1,-3),(-19,-1,11),(-11,-1,7)]`

`X = A^-1 B`

`=> [(x),(y),(z)] = 1/4 [(7,1,-3),(-19,-1,11),(-11,-1,7)] [(7),(-5),(12)]`

`= 1/4 [(49 - 5 - 36),(-133 + 5 + 132),(-77 + 5 + 84)]`

`= 1/4 [(8),(4),(12)] = [(2),(1),(3)]`

So, x = `2, y = 1,  or  z = 3.`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise 4.6 [पृष्ठ १३६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise 4.6 | Q 14 | पृष्ठ १३६

संबंधित प्रश्न

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.

 

If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Solve the following system of equations by matrix method:
 5x + 2y = 3
 3x + 2y = 5


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.

 

Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×