Advertisements
Advertisements
प्रश्न
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} \left( b + c \right)^2 & a^2 & bc\\ \left( c + a \right)^2 & b^2 & ca\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \begin{vmatrix} \left( b + c \right)^2 - \left( c + a \right)^2 & a^2 - b^2 & bc - ca\\ \left( c + a \right)^2 - \left( a + b \right)^2 & b^2 - c^2 & ca - ab\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right]\]
\[ = \begin{vmatrix} \left( b - a \right)\left( b + 2c + a \right) & \left( a + b \right) \left( a - b \right)b & c\left( b - a \right)\\ \left( c - b \right)\left( b + 2a + c \right) & \left( b - c \right) \left( b + c \right) & a\left( c - b \right)\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\begin{vmatrix} - \left( b + 2c + a \right) & a + b & - c \\ - \left( b + 2a + c \right) & b + c & - a\\ \left( a + b \right)^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ and taking out }\left( a - b \right)\text{ common from }R_1\text{ and }\left( b - c \right)\text{ from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b \right)^2 - c^2 & c^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 - C_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} - 2\left( b + c + a \right) & a + b & - c \\ - 2\left( b + a + c \right) & b + c & - a\\ \left( a + b + c \right) \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }x^2 - y^2 = \left( x + y \right)\left( x - y \right)\text{ in }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right) \begin{vmatrix} - 2 & a + b & - c \\ - 2 & b + c & - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( a + b + c \right)\text{ common from }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & c - a & c - a\\ \left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b & - c \\ 0 & 1 & 1\\\left( a + b - c \right) & c^2 & ab \end{vmatrix} \left[\text{ Taking out }\left( c - a \right)\text{ common from }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\begin{vmatrix} - 2 & a + b + c & - c \\ 0 & 0 & 1\\\left( a + b - c \right) & c^2 - ab & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_3 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right) \left\{ \left( - 1 \right)\begin{vmatrix} - 2 & a + b + c \\\left( a + b - c \right) & c^2 - ab \end{vmatrix} \right\} \left[\text{ Expanding along }R_2 \right]\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left\{ - 2 c^2 + 2ab - a^2 - b^2 - 2ab + c^2 \right\}\]
\[ = - \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( - a^2 - b^2 - c^2 \right)\]
\[ = \left( a - b \right)\left( b - c \right)\left( a + b + c \right)\left( c - a \right)\left( a^2 + b^2 + c^2 \right)\]
\[ = RHS\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sqrt{23} + \sqrt{3} & \sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{46} & 5 & \sqrt{10} \\ 3 + \sqrt{115} & \sqrt{15} & 5\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Prove that :
x+ y = 5
y + z = 3
x + z = 4
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
Show that \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`