Advertisements
Advertisements
प्रश्न
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
उत्तर
We have,
\[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & - 1\end{bmatrix}\]
\[\therefore \left| A \right| = \begin{vmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ - 3 & 1 & - 1\end{vmatrix}\]
\[ = 2\left( - 2 - 2 \right) - 3\left( - 1 + 6 \right) + 1\left( 1 + 6 \right)\]
\[ = - 8 - 15 + 7\]
\[ = - 16 \neq 0\]
So, A is invertible.
Let Cij be the co-factors of the elements aij in A[aij]. Then,
\[C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 2 \\ 1 & - 1\end{vmatrix} = - 2 - 2 = - 4\]
\[ C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ - 3 & - 1\end{vmatrix} = - 1\left( - 1 + 6 \right) = - 5\]
\[ C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ - 3 & 1\end{vmatrix} = 1 + 6 = 7\]
\[C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 1 \\ 1 & - 1\end{vmatrix} = 3 + 1 = 4\]
\[ C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 1 \\ - 3 & - 1\end{vmatrix} = - 2 + 3 = 1\]
\[ C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 3 \\ - 3 & 1\end{vmatrix} = - 1\left( 2 + 9 \right) = - 11\]
\[C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 1 \\ 2 & 2\end{vmatrix} = 6 - 2 = 4\]
\[ C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 1 \\ 1 & 2\end{vmatrix} = - 1\left( 4 - 1 \right) = - 3\]
\[ C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 3 \\ 1 & 2\end{vmatrix} = 4 - 3 = 1\]
\[\therefore Adj A = \begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}^T = \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{Adj A}{\left| A \right|} = \frac{1}{- 16}\begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
Now, the given system of equations is expressible as
Or AT X = B, where
Now,
So, the given system of equations is consistent with a unique solution given by
\[\begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16} \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}^T \begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}\begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 52 - 20 + 56 \\ 52 + 4 - 88 \\ 52 - 12 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 16 \\ - 32 \\ 48\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ - 3\end{bmatrix}\]
Hence, x = 1, y = 2 and z = −3 is the required solution.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Prove that :
Given: x + 2y = 1
3x + y = 4
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
For what value of x, the following matrix is singular?
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of the determinant
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are