English

If a = ⎡ ⎢ ⎣ 2 3 1 1 2 2 3 1 − 1 ⎤ ⎥ ⎦ , Find A–1 and Hence Solve the System of Equations 2x + Y – 3z = 13, 3x + 2y + Z = 4, X + 2y – Z = 8. - Mathematics

Advertisements
Advertisements

Question

If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.

Solution

We have,
\[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ -3 & 1 & - 1\end{bmatrix}\]
\[\therefore \left| A \right| = \begin{vmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ - 3 & 1 & - 1\end{vmatrix}\]
\[ = 2\left( - 2 - 2 \right) - 3\left( - 1 + 6 \right) + 1\left( 1 + 6 \right)\]
\[ = - 8 - 15 + 7\]
\[ = - 16 \neq 0\]
So, A is invertible.
Let Cij be the co-factors of the elements aij in A[aij]. Then,
\[C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 2 \\ 1 & - 1\end{vmatrix} = - 2 - 2 = - 4\]
\[ C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}1 & 2 \\ - 3 & - 1\end{vmatrix} = - 1\left( - 1 + 6 \right) = - 5\]
\[ C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}1 & 2 \\ - 3 & 1\end{vmatrix} = 1 + 6 = 7\]
\[C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 1 \\ 1 & - 1\end{vmatrix} = 3 + 1 = 4\]
\[ C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}2 & 1 \\ - 3 & - 1\end{vmatrix} = - 2 + 3 = 1\]
\[ C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}2 & 3 \\ - 3 & 1\end{vmatrix} = - 1\left( 2 + 9 \right) = - 11\]
\[C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 1 \\ 2 & 2\end{vmatrix} = 6 - 2 = 4\]
\[ C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}2 & 1 \\ 1 & 2\end{vmatrix} = - 1\left( 4 - 1 \right) = - 3\]
\[ C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}2 & 3 \\ 1 & 2\end{vmatrix} = 4 - 3 = 1\]
\[\therefore Adj A = \begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}^T = \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{Adj A}{\left| A \right|} = \frac{1}{- 16}\begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}\]
Now, the given system of equations is expressible as
Or AX = B, where 

\[X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}, B = \begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
Now,
\[\left| A^T \right| = \left| A \right| = - 16 \neq 0\]
So, the given system of equations is consistent with a unique solution given by
\[X = \left( A^T \right)^{- 1} B = \left( A^{- 1} \right)^T B\]
\[\begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16} \begin{bmatrix}- 4 & 4 & 4 \\ - 5 & 1 & - 3 \\ 7 & - 11 & 1\end{bmatrix}^T \begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 4 & - 5 & 7 \\ 4 & 1 & - 11 \\ 4 & - 3 & 1\end{bmatrix}\begin{bmatrix}13 \\ 4 \\ 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 52 - 20 + 56 \\ 52 + 4 - 88 \\ 52 - 12 + 8\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{16}\begin{bmatrix}- 16 \\ - 32 \\ 48\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 2 \\ - 3\end{bmatrix}\]
Hence, x = 1, = 2 and = −3 is the required solution.
shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 16]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 8.6 | Page 16

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of  \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\]  , where \[x, y, z \neq\] 0


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


3x + y = 19
3x − y = 23


Given: x + 2y = 1
            3x + y = 4


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×