Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solution
Here,
\[A = \begin{bmatrix}1 & - 1 & 1 \\ 2 & - 1 & 0 \\ 0 & 2 & - 1\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 1 \\ 2 & - 1 & 0 \\ 0 & 2 & - 1\end{vmatrix}\]
\[ = 1\left( 1 - 0 \right) + 1\left( - 2 - 0 \right) + 1(4 - 0)\]
\[ = 1 - 2 + 4\]
\[ = 3\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 1 & 0 \\ 2 & - 1\end{vmatrix} = 1, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 0 \\ 0 & - 1\end{vmatrix} = 2, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & - 1 \\ 0 & 2\end{vmatrix} = 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 1 \\ 2 & - 1\end{vmatrix} = 1, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 0 & - 1\end{vmatrix} = - 1, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 0 & 2\end{vmatrix} = - 2\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 1 \\ - 1 & 0\end{vmatrix} = 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 2 & 0\end{vmatrix} = 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 2 & - 1\end{vmatrix} = 1\]
\[adj A = \begin{bmatrix}1 & 2 & 4 \\ 1 & - 1 & - 2 \\ 1 & 2 & 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}1 & 1 & 1 \\ 2 & - 1 & 2 \\ 4 & - 2 & 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{1}\begin{bmatrix}1 & 1 & 1 \\ 2 & - 1 & 2 \\ 4 & - 2 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{3}\begin{bmatrix}1 & 1 & 1 \\ 2 & - 1 & 2 \\ 4 & - 2 & 1\end{bmatrix}\begin{bmatrix}2 \\ 0 \\ 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{3}\begin{bmatrix}2 + 1 \\ 4 + 2 \\ 8 + 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{1}\begin{bmatrix}3 \\ 6 \\ 9\end{bmatrix}\]
\[ \Rightarrow x = \frac{3}{3}, y = \frac{6}{3}\text{ and }z = \frac{9}{3}\]
\[ \therefore x = 1, y = 2\text{ and }z = 3\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 A & \cot A & 1 \\ \sin^2 B & \cot B & 1 \\ \sin^2 C & \cot C & 1\end{vmatrix}, where A, B, C \text{ are the angles of }∆ ABC .\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Prove that :
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.