English

Prove that : ∣ ∣ ∣ ∣ 1 a B C 1 B C a 1 C a B ∣ ∣ ∣ ∣ = ∣ ∣ ∣ ∣ ∣ 1 a A 2 1 B B 2 1 C C 2 ∣ ∣ ∣ ∣ ∣ - Mathematics

Advertisements
Advertisements

Question

Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 

Solution

\[\text{ Let LHS }= ∆ = \begin{vmatrix} 1 & a & bc\\1 & b & ca \\1 & c & ab \end{vmatrix}\] 
\[ = \frac{1}{abc}\begin{vmatrix} a & a^2 & abc\\b & b^2 & bca \\c & c^2 & abc \end{vmatrix} \left[\text{ Applying }R_1 \to a R_1 , R_2 \to b R_2\text{ and }R_3 \to c R_3\text{ and then dividing it by abc }\right] \] 
\[ = \frac{abc}{abc}\begin{vmatrix} a & a^2 & 1\\b & b^2 & 1\\c & c^2 & 1 \end{vmatrix} \left[\text{ Taking out abc common from }C_3 \right]\] 
\[ = \left( - 1 \right) \begin{vmatrix} 1 & a^2 & a\\1 & b^2 & b\\1 & c^2 & c \end{vmatrix} \left[\text{ Interchanging }C_3 \text{ and }C_1\text{ to get - ve value of original determinant }\right]\] 
\[ = \left( - 1 \right)\left( - 1 \right)\begin{vmatrix} 1 & a & a^2 \\1 & b^{} & b^2 \\1 & c & c^2 \end{vmatrix} \left[\text{ Applying }C_2 \leftrightarrow C_3 \right]\] 
\[ = \begin{vmatrix} 1 & a & a^2 \\1 & b^{} & b^2 \\1 & c & c \end{vmatrix}\] 
\[ = RHS\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 59]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 18 | Page 59

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


3x + y = 19
3x − y = 23


x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


If \[A = \begin{bmatrix}2 & 4 \\ 4 & 3\end{bmatrix}, X = \binom{n}{1}, B = \binom{ 8}{11}\]  and AX = B, then find n.

The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×