Advertisements
Advertisements
Question
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
Solution
Given: x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
\[D = \begin{vmatrix}1 & - 4 & - 1 \\ 2 & - 5 & 2 \\ - 3 & 2 & 1\end{vmatrix}\]
\[ = 1\left( - 5 - 4 \right) - ( - 4)(2 + 6) + ( - 1)(4 - 15)\]
\[ = 1( - 9) - ( - 4)(8) + ( - 1)( - 11) = 34\]
\[ D_1 = \begin{vmatrix}11 & - 4 & - 1 \\ 39 & - 5 & 2 \\ 1 & 2 & 1\end{vmatrix}\]
\[ = 11( - 5 - 4) - ( - 4)(39 - 2) + ( - 1)(78 + 5)\]
\[ = 11( - 9) - ( - 4)(37) + ( - 1)(83) = - 34\]
\[ D_2 = \begin{vmatrix}1 & 11 & - 1 \\ 2 & 39 & 2 \\ - 3 & 1 & 1\end{vmatrix}\]
\[ = 1(39 - 2) - 11(2 + 6) + ( - 1)(2 + 117)\]
\[ = 1(37) - 11(8) + ( - 1)(119) = - 170\]
\[ D_3 = \begin{vmatrix}1 & - 4 & 11 \\ 2 & - 5 & 39 \\ - 3 & 2 & 1\end{vmatrix}\]
\[ = 1( - 5 - 78) - ( - 4)(2 + 117) + 11(4 - 15)\]
\[ = 1( - 83) - ( - 4)(119) + 11( - 11) = 272\]
Now,
\[x = \frac{D_1}{D} = \frac{- 34}{34} = - 1\]
\[y = \frac{D_2}{D} = \frac{- 170}{34} = - 5\]
\[z = \frac{D_3}{D} = \frac{272}{34} = 8\]
\[ \therefore x = -1, y = -5\text{ and }z = 8\]
APPEARS IN
RELATED QUESTIONS
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Solve the following determinant equation:
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
Prove that :
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
The value of the determinant
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in