Advertisements
Advertisements
Question
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Solution
Using the equations we get
\[D = \begin{vmatrix}1 & - 1 & 1 \\ 2 & 1 & - 1 \\ - 1 & - 2 & 2\end{vmatrix}\]
\[ \Rightarrow 1\left( 2 - 2 \right) + 1\left( 4 - 1 \right) + 1\left( - 4 + 1 \right) = 0\]
\[ D_1 = \begin{vmatrix}3 & - 1 & 1 \\ 2 & 1 & - 1 \\ 1 & - 2 & 2\end{vmatrix}\]
\[ \Rightarrow 3\left( 2 - 2 \right) + 1\left( 4 + 1 \right) + 1\left( - 4 - 1 \right) = 0\]
\[ D_2 = \left| \begin{array}1 & 3 & 1 \\ 2 & 2 & - 1 \\ - 1 & 1 & 2\end{array} \right|\]
\[ \Rightarrow 1\left( 4 + 1 \right) - 3\left( 4 - 1 \right) + 1\left( 2 + 2 \right) = 0\]
\[ D_3 = \begin{vmatrix}1 & - 1 & 3 \\ 2 & 1 & 2 \\ - 1 & - 2 & 1\end{vmatrix}\]
\[ \Rightarrow 1\left( 1 + 4 \right) + 1\left( 2 + 2 \right) + 3\left( - 4 + 1 \right) = 0\]
Here,
\[D = D_1 = D_2 = D_3 = 0\]
Thus, the system of linear equations has infinitely many solutions.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Solve the following determinant equation:
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that
5x + 7y = − 2
4x + 6y = − 3
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If A is a singular matrix, then write the value of |A|.
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
`abs (("a"^2, 2"ab", "b"^2),("b"^2, "a"^2, 2"ab"),(2"ab", "b"^2, "a"^2))` is equal to ____________.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.