Advertisements
Advertisements
Question
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Solution
Let the price of onion be Rs per kg = x
The price of wheat is Rs per kg = y
The price of rice be Rs per kg = z
Then according to the given conditions,
4x + 3y + 2z = 60;
2x + 4y + 6z = 90;
6x + 2y + 3z = 70
This system of equations can be written as AX = B.
`[(4,3,2),(2,4,6),(6,2,3)] [(x),(y),(z)] = [(60),(90),(70)]`
A = `[(4,3,2),(2,4,6),(6,2,3)], X = [(x),(y),(z)], B = [(60),(90),(70)]`
`abs A = [(4,3,2),(2,4,6),(6,2,3)]`
`= 4(12 - 12) - 3(2 xx 3 - 6 xx 6) + 2 (2 xx 2 - 6 xx 4)`
`= 0 + 90 - 40 = 50 ne 0`
`therefore A^-1` can be found
Cofactors of the elements of `abs A`
`A_11 = 0, A_12 = 30, A_13 = - 20`
`A_21 = - 5, A_22 = 0, A_23 = 10`
`A_31 = 10, A_32 = - 20, A_33 = 10`
`therefore adj A = [(0,30,-20),(-5,0,10),(10,-20,10)] = [(0,-5,10),(30,0,-20),(-20,10,10)]`
`A^-1 = adj A/abs A = 1/50 [(0,-5,10),(30,0,-20),(-20,10,10)]`
AX = B ⇒ X = A-1 B
`therefore [(x),(y),(z)] = 1/50 [(0,-5,10),(30,0,-20),(-20,10,10)] [(60),(90),(70)]`
`= 1/50 [(0 - 450 + 700),(1800 + 0 - 1400),(-1200 + 900 + 700)]`
`= 1/50 [(250),(400),(400)] = [(5),(8),(8)]`
⇒ x = 5, y = 8, z = 8
Hence, the cost of 1 kg onion = Rs 5
Price of 1 kg wheat = Rs 8
Price of 1 kg rice = Rs 8
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x + 2y = 5
3x + 6y = 15
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
System of equations x + y = 2, 2x + 2y = 3 has ______
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.