Advertisements
Advertisements
Question
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Solution
A scalar matrix is a diagonal matrix, in which all the diagonal elements are equal to a given scalar number.
\[\text{ Given: }A = \left[ a_{i j} \right]\text{ is 3} \times\text{ 3 matrix, where }a_{11} = 2 \]
\[ \Rightarrow A = \begin{bmatrix} 2 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2 \end{bmatrix} \]
\[ \Rightarrow \left| A \right| = \begin{vmatrix} 2 & 0 & 0\\0 & 2 & 0\\ 0 & 0 & 2 \end{vmatrix}\]
\[ = 2 \times \begin{vmatrix} 2 & 0\\ 0 & 2 \end{vmatrix} \left[\text{ Expanding along }C_1 \right]\]
\[ = 2 \times 2 \times 2 = 8\]
APPEARS IN
RELATED QUESTIONS
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Show that x = 2 is a root of the equation
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
2x − y = − 2
3x + 4y = 3
3x + ay = 4
2x + ay = 2, a ≠ 0
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Find the real values of λ for which the following system of linear equations has non-trivial solutions. Also, find the non-trivial solutions
\[2 \lambda x - 2y + 3z = 0\]
\[ x + \lambda y + 2z = 0\]
\[ 2x + \lambda z = 0\]
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`