Advertisements
Advertisements
Question
Prove that :
Solution
\[\text{ Let LHS }= ∆ = \begin{vmatrix} 1 & b + c & b^2 + c^2 \\1 & c + a & c^2 + a^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\]
\[ \Rightarrow ∆ = \begin{vmatrix} 0 & ( b + c ) - ( c + a ) & ( b^2 + c^2 ) - ( c^2 + a^2 \\0 &( c + a ) - ( a + b ) & ( c^2 + a^2 ) - ( a^2 + b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right] \]
\[ = \begin{vmatrix} 0 & b - a & b^2 - a^2 \\0 & c - b & c^2 - b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\]
\[ = \left( - 1 \right)^2 \begin{vmatrix} 0 & a - b & a^2 - b^2 \\0 & b - c & b^2 - c^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Taking out }\left( - 1 \right)\text{ common from }R_1 \text{ and }R_2 \right]\]
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} 0 & 1 & a + b\\0 & 1 & b + c\\1 & a + b & a^2 + b^2 \end{vmatrix}\]
\[ = \left( a - b \right)\left( b - c \right)\left\{ 1 \times \begin{vmatrix} 1 & a + b\\1 & b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\]
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\]
\[ = RHS\]
APPEARS IN
RELATED QUESTIONS
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Prove that :
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Write the value of
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The value of the determinant
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals: