Advertisements
Advertisements
Question
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Solution
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
\[ = \begin{vmatrix}\left( 2^{2x} + 2^{- 2x} + 2 \right) & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ \left( 3^{2x} + 3^{- 2x} + 2 \right) & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ \left( 4^{2x} + 4^{- 2x} + 2 \right) & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix}\]
\[ = \begin{vmatrix}4 & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ 4 & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ 4 & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix} \left[ \text{ Applying }C_1 \to C_1 - C_2 \right]\]
\[ = 4\begin{vmatrix}1 & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ 1 & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ 1 & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix}\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Find the value of x, if
\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
3x + y = 19
3x − y = 23
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Write the value of
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
The value of the determinant
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.